Ultrafast two-dimensional infrared (2D-IR) vibrational echo spectroscopy can probe structural dynamics under thermal equilibrium conditions on time scales ranging from femtoseconds to 100ps and longer. One of the important uses of 2D-IR spectroscopy is to monitor the dynamical evolution of a molecular system by reporting the time dependent frequency fluctuations of an ensemble of vibrational probes. The vibrational frequency-frequency correlation function (FFCF) is the connection between the experimental observables and the microscopic molecular dynamics and is thus the central object of interest in studying dynamics with 2D-IR vibrational echo spectroscopy. A new observable is presented that greatly simplifies the extraction of the FFCF from experimental data. The observable is the inverse of the center line slope (CLS) of the 2D spectrum. The CLS is the inverse of the slope of the line that connects the maxima of the peaks of a series of cuts through the 2D spectrum that are parallel to the frequency axis associated with the first electric field-matter interaction. The CLS varies from a maximum of 1 to 0 as spectral diffusion proceeds. It is shown analytically to second order in time that the CLS is the Tw (time between pulses 2 and 3) dependent part of the FFCF. The procedure to extract the FFCF from the CLS is described, and it is shown that the Tw independent homogeneous contribution to the FFCF can also be recovered to yield the full FFCF. The method is demonstrated by extracting FFCFs from families of calculated 2D-IR spectra and the linear absorption spectra produced from known FFCFs. Sources and magnitudes of errors in the procedure are quantified, and it is shown that in most circumstances, they are negligible. It is also demonstrated that the CLS is essentially unaffected by Fourier filtering methods (apodization), which can significantly increase the efficiency of data acquisition and spectral resolution, when the apodization is applied along the axis used for obtaining the CLS and is symmetrical about τ=0. The CLS is also unchanged by finite pulse durations that broaden 2D spectra.

1.
J. B.
Asbury
,
T.
Steinel
,
C.
Stromberg
,
S. A.
Corcelli
,
C. P.
Lawrence
,
J. L.
Skinner
, and
M. D.
Fayer
,
J. Phys. Chem. A
108
,
1107
(
2004
).
2.
C. J.
Fecko
,
J. J.
Loparo
,
S. T.
Roberts
, and
A.
Tokmakoff
,
J. Chem. Phys.
122
,
054506
(
2005
).
3.
M. L.
Cowan
,
B. D.
Bruner
,
N.
Huse
,
J. R.
Dwyer
,
B.
Chugh
,
E. T. J.
Nibbering
,
T.
Elsasser
, and
R. J. D.
Miller
,
Nature (London)
434
,
199
(
2005
).
4.
I. J.
Finkelstein
,
J.
Zheng
,
H.
Ishikawa
,
S.
Kim
,
K.
Kwak
, and
M. D.
Fayer
,
Phys. Chem. Chem. Phys.
9
,
1533
(
2007
).
5.
L. P.
DeFlores
and
A.
Tokmakoff
,
J. Am. Chem. Soc.
128
,
16520
(
2006
).
6.
P.
Mukherjee
,
I.
Kass
,
I. T.
Arkin
, and
M. T.
Zanni
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
3528
(
2006
).
7.
Y. S.
Kim
and
R. M.
Hochstrasser
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
11185
(
2005
).
8.
J.
Zheng
,
K.
Kwak
,
J. B.
Asbury
,
X.
Chen
,
I.
Piletic
, and
M. D.
Fayer
,
Science
309
,
1338
(
2005
).
9.
K.
Kwak
,
J.
Zheng
,
H.
Cang
, and
M. D.
Fayer
,
J. Phys. Chem. B
110
,
10384
(
2006
).
10.
J.
Zheng
,
K.
Kwak
,
J.
Xie
, and
M. D.
Fayer
,
Science
313
,
1951
(
2006
).
11.
J.
Wang
,
J.
Chen
, and
R. M.
Hochstrasser
,
J. Phys. Chem. B
110
,
7545
(
2006
).
12.
E. C.
Fulmer
,
F.
Ding
, and
M. T.
Zanni
,
J. Chem. Phys.
122
,
034302
(
2005
).
13.
J. B.
Asbury
,
T.
Steinel
,
K.
Kwak
,
S. A.
Corcelli
,
C. P.
Lawrence
,
J. L.
Skinner
, and
M. D.
Fayer
,
J. Chem. Phys.
121
,
12431
(
2004
).
14.
O.
Golonzka
,
M.
Khalil
,
N.
Demirdoven
, and
A.
Tokmakoff
,
Phys. Rev. Lett.
86
,
2154
(
2001
).
15.
M.
Khalil
,
N.
Demirdoven
, and
A.
Tokmakoff
,
J. Chem. Phys.
121
,
362
(
2004
).
16.
O.
Golonzka
,
M.
Khalil
,
N.
Demirdoven
, and
A.
Tokmakoff
,
J. Chem. Phys.
115
,
10814
(
2001
).
17.
M.
Khalil
,
N.
Demirdoven
, and
A.
Tokmakoff
,
J. Phys. Chem. A
107
,
5258
(
2003
).
18.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
19.
J. D.
Eaves
,
J. J.
Loparo
,
C. J.
Fecko
,
S. T.
Roberts
,
A.
Tokmakoff
, and
P. L.
Geissler
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
13019
(
2005
).
20.
S. A.
Corcelli
,
C. P.
Lawrence
, and
J. L.
Skinner
,
J. Chem. Phys.
120
,
8107
(
2004
).
21.
S.
Mukamel
and
R. F.
Loring
,
J. Opt. Soc. Am. B
3
,
595
(
1986
).
22.
23.
W. M.
Zhang
,
V.
Chernyak
, and
S.
Mukamel
,
J. Chem. Phys.
110
,
5011
(
1999
).
24.
M. H.
Cho
,
J. Y.
Yu
,
T. H.
Joo
,
Y.
Nagasawa
,
S. A.
Passino
, and
G. R.
Fleming
,
J. Chem. Phys.
100
,
11944
(
1996
).
25.
A.
Piryatinski
and
J. L.
Skinner
,
J. Phys. Chem. B
106
,
8055
(
2002
).
26.
A.
Tokmakoff
,
J. Phys. Chem. A
104
,
4247
(
2000
).
27.
K.
Okumura
,
A.
Tokmakoff
, and
Y.
Tanimura
,
Chem. Phys. Lett.
314
,
488
(
1999
).
28.
K.
Kwac
and
M.
Cho
,
J. Phys. Chem. A
107
,
5903
(
2003
).
29.
S. T.
Roberts
,
J. J.
Loparo
, and
A.
Tokmakoff
,
J. Chem. Phys.
125
,
084502
(
2006
).
30.
I. J.
Finkelstein
,
H.
Ishikawa
,
S.
Kim
,
A. M.
Massari
, and
M. D.
Fayer
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
2637
(
2007
).
31.
R. N.
Bracewell
,
The Fourier Transform and Its Application
(
McGraw Hill
,
Boston
,
2000
).
32.
M. T.
Zanni
,
M. C.
Asplund
, and
R. M.
Hochstrasser
,
J. Chem. Phys.
114
,
4579
(
2001
).
33.
E. G.
Codding
and
G.
Horlick
,
Appl. Spectrosc.
27
,
85
(
1973
).
34.
A. G.
Marshall
and
F. R.
Verdun
,
Fourier Transforms in NMR, Optical, and Mass Spectrometry
(
Elsevier
,
New York
,
1990
).
35.
J. C.
Hoch
and
A. S.
Stern
,
NMR Data Processing
(
Wiley-Liss
,
New York
,
1996
).
36.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C
, 2nd ed. (
Cambridge University Press
,
New York
,
1999
).
37.
M.
Khalil
,
N.
Demirdoven
, and
A.
Tokmakoff
,
Phys. Rev. Lett.
90
,
047401
(
2003
).
38.
M.
Sarah
,
G.
Faeder
, and
D. M.
Jonas
,
J. Phys. Chem. A
103
,
10489
(
1999
).
39.
J. R.
Schmidt
,
N.
Sundlass
, and
J. L.
Skinner
,
Chem. Phys. Lett.
378
,
559
(
2003
).
40.
I. J.
Finkelstein
,
H.
Ishikawa
,
S.
Kim
,
A. M.
Massari
, and
M. D.
Fayer
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
2637
(
2007
).
41.
S.
Woutersen
,
R.
Pfister
,
P.
Hamm
,
Y.
Mu
,
D. S.
Kosov
, and
G.
Stock
,
J. Chem. Phys.
117
,
6833
(
2002
).
42.
C. P.
Lawrence
and
J. L.
Skinner
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6720
(
2005
).
43.
M.
Khalil
,
N.
Demirdoven
, and
A.
Tokmakoff
,
Phys. Rev. Lett.
90
,
047401
(
2003
).
44.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1999
).
45.
T.
Steinel
,
J. B.
Asbury
,
J. R.
Zheng
, and
M. D.
Fayer
,
J. Phys. Chem. A
108
,
10957
(
2004
).
46.
S.
Park
,
K.
Kwak
, and
M. D.
Fayer
,
Laser Phys. Lett.
4
,
704
(
2007
).
47.
K.
Kwak
,
S.
Park
, and
M. D.
Fayer
,
Proc. Natl. Acad. Sci. U.S.A.
(to be published).
48.
R. R.
Ernst
,
G.
Bodenhausen
, and
A.
Wokaun
,
Nuclear Magnetic Resonance in One and Two Dimensions
(
Oxford University Press
,
Oxford
,
1987
).
49.
J. B.
Asbury
,
T.
Steinel
, and
M. D.
Fayer
,
J. Lumin.
107
,
271
(
2004
).
50.
P.
Kjellberg
,
B.
Bruggemann
, and
T.
Pullerists
,
Phys. Rev. B
74
,
24303
(
2006
).
51.
H. O.
Di Rocco
,
D. I.
Iriarte
, and
J.
Pomarico
,
Appl. Spectrosc.
55
,
822
(
2001
).
52.
R.
Freeman
,
A Handbook of Nuclear Magnetic Resonance
(
Addison-Wesley-Longman
,
Singapore
,
1997
).
You do not currently have access to this content.