We use Brownian dynamics computer simulations to investigate the structure of a semidilute polymer solution undergoing a steady, uniform shear flow. We find that the contributions to structure factor from intra- and interchain correlations, which cancel each other almost completely for an equilibrium semidilute solution, are modified in different ways by the shear flow. Incomplete cancellation of these contributions leads to anisotropic patterns that resemble those observed in light scattering experiments on sheared semidilute solutions [Wu et al., Phys. Rev. Lett. 66, 2408 (1991)]. For small wave vectors the structure factor change is dominated by the interchain contribution. We also monitor the distortion of the pair correlation function and show that for small distances it is dominated by the intrachain contribution. Finally, we investigate nonlinear shear viscosity and find that, like the short-distance part of the distortion of the pair correlation function, it is predominantly of intrachain origin.
REFERENCES
For the purpose of this simple argument we neglect the nonspherical shape of individual chains.