Triblock copolymers of the form poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) have been shown to effectively interact with and restore activity of damaged cell membranes. To better understand the interaction between these polymers and cell membranes, we have modeled the outer leaflet of a cell membrane with a lipid monolayer spread at the air-water interface and injected poloxamers of varying architectures into the subphase beneath the monolayer. Subsequent interactions of the polymer with the monolayer upon compression were monitored with concurrent Langmuir isotherm and fluorescence microscopy measurements. Monte Carlo simulations were run in parallel using a coarse-grained model to capture interactions between lipids and poloxamers. Changing the ratio of the PEO to PPO block lengths (NPEO:NPPO) affects the equilibrium spreading pressure of the polymer. Poloxamers with a relatively longer central hydrophobic block are less soluble, resulting in more polymer adsorbed to the interface and therefore a higher equilibrium spreading pressure. Simulation results show that changing the poloxamer structure effectively affects its solubility. This is also reflected in the degree of lipid corralling as poloxamers with a higher chemical potential (and resulting higher equilibrium spreading pressure) cause the neighboring lipid domains to be more ordered. Upon lateral compression of the monolayers, the polymer is expelled from the film beyond a certain squeeze-out pressure. A poloxamer with a higher NPEO:NPPO ratio (with either NPEO or NPPO held constant in each series) has a lower squeeze-out pressure. Likewise when the total size of the polymer is varied with a constant hydrophilic:hydrophobic ratio, smaller poloxamers are squeezed out at a lower pressure. Our simulation results capture the trends of our experimental observations, both indicating how the interactions between lipids and poloxamers can be tuned by the polymer architecture.

1.
I. R.
Schmolka
,
J. Am. Oil Chem. Soc.
54
,
100
(
1977
).
2.
G. S.
Kwon
,
Crit. Rev. Ther. Drug Carrier Syst.
20
,
357
(
2003
).
3.
E.
Bilensoy
,
M. A.
Rouf
,
I.
Vural
,
M.
Sen
, and
A. A.
Hincal
,
AAPS PharmSciTech
7
,
38
(
2006
).
4.
D. W.
Murhammer
and
C. F.
Goochee
,
Biotechnol. Prog.
6
,
142
(
1990
).
5.
R. C.
Lee
,
L. P.
River
,
F. S.
Pan
,
L.
Ji
, and
R. L.
Wollmann
,
Proc. Natl. Acad. Sci. U.S.A.
89
,
4524
(
1992
).
6.
F. A.
Merchant
,
W. H.
Holmes
,
M.
Capelli-Schellpfeffer
,
R. C.
Lee
, and
M.
Toner
,
J. Surg. Res.
74
,
131
(
1998
).
7.
B.
Greenbaum
,
K.
Blossfield
,
J.
Hannig
,
C. S.
Carrillo
,
M. A.
Beckett
,
R. R.
Weichselbaum
, and
R. C.
Lee
,
Burns
30
,
539
(
2004
).
8.
G.
Serbest
,
J.
Horwitz
, and
K.
Barbee
,
J. Neurotrauma
22
,
119
(
2005
).
9.
S.
Yasuda
,
D.
Townsend
,
D. E.
Michele
,
E. G.
Favre
,
S. M.
Day
, and
S. M.
Metzger
,
Nature (London)
436
,
1025
(
2005
).
10.
Y.
Wang
,
S.
Liu
,
C. Y.
Li
, and
F.
Yuan
,
Cancer Res.
65
,
7541
(
2005
).
11.
12.
C.
Ege
and
K. Y. C.
Lee
,
Biophys. J.
87
,
1732
(
2004
).
13.
S. A.
Maskarinec
,
J.
Hannig
,
R. C.
Lee
, and
K. Y. C.
Lee
,
Biophys. J.
82
,
1453
(
2002
).
14.
S. A.
Maskarinec
and
K. Y. C.
Lee
,
Langmuir
19
,
1809
(
2003
).
15.
G. H.
Wu
,
J.
Majewski
,
C.
Ege
,
K.
Kjaer
,
M. J.
Weygand
, and
K. Y. C.
Lee
,
Phys. Rev. Lett.
93
,
028101
(
2004
).
16.
G. H.
Wu
,
J.
Majewski
,
C.
Ege
,
K.
Kjaer
,
M. J.
Weygand
, and
K. Y. C.
Lee
,
Biophys. J.
89
,
3159
(
2005
).
17.
D. S.
Zhang
,
M. A.
Carignano
, and
I.
Szleifer
,
Phys. Rev. Lett.
96
,
028701
(
2006
).
18.
L. C.
Chang
,
C. Y.
Lin
,
M. W.
Kuo
, and
C. S.
Gau
,
J. Colloid Interface Sci.
285
,
640
(
2005
).
20.
D.
Chandler
,
Introduction to Modern Statistical Mechanics
(
Oxford University Press
,
New York
,
1987
).
21.
V.
Harismiadis
and
I.
Szleifer
,
Mol. Phys.
81
,
851
(
1994
).
22.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Elsevier
,
New York
,
2002
).
23.
D. A.
McQuarrie
,
Statistical Mechanics
(
Harper and Row
,
New York
,
1976
).
24.
H.
Diamant
,
T. A.
Witten
,
C.
Ege
,
A.
Gopal
, and
K. Y. C.
Lee
,
Phys. Rev. E
63
,
061602
(
2001
).
25.

The results presented in Figs. 8 and 9 are similar to the ones previously published in Ref. 17. We include them here to present a complete picture of the structures that would correspond to the different regions studied in the experimental systems, and how the simulation results relate to those experiments.

26.
R. A.
Steinhardt
,
G.
Bi
, and
J. M.
Alderton
,
Science
263
,
390
(
1994
).
27.
A. M.
Walsh
,
D.
Mustafi
,
M. W.
Makinen
, and
R. C.
Lee
,
Ann. N.Y. Acad. Sci.
1066
,
321
(
2005
).
28.
See EPAPS Document No. E-JCPSA6-127-022732 for a Monte Carlo simulation of the poloxamer adsorption into the lipid layer followed by the compression of the layer and expulsion of the polymers. This document can be reached through a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).

Supplementary Material

You do not currently have access to this content.