This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green’s function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green’s function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2Å for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.

1.
P.
Koehl
,
Curr. Opin. Struct. Biol.
16
,
142
(
2006
).
2.
C. L.
Vizcarra
and
S. L.
Mayo
,
Curr. Opin. Struct. Biol.
9
,
622
(
2005
).
3.
F.
Fogolari
,
A.
Brigo
, and
H.
Molinari
,
J. Mol. Recognit.
15
,
377
(
2002
).
4.
N. A.
Baker
,
Curr. Opin. Struct. Biol.
15
,
137
(
2005
).
5.
M.
Feig
and
C. L.
Brooks
 III
,
Curr. Opin. Struct. Biol.
14
,
217
(
2004
).
6.
C. M.
Cortis
and
R. A.
Friesner
,
J. Comput. Chem.
18
,
1591
(
1997
).
7.
K. E.
Forsten
,
R. E.
Kozack
,
D. A.
Lauffenburger
, and
S.
Subramaniam
,
J. Phys. Chem.
98
,
5580
(
1994
).
8.
B.
Honig
and
A.
Nicholls
,
Science
268
,
1144
(
1995
).
9.
B.
Roux
and
T.
Simonson
,
Biophys. Chem.
78
,
1
(
1999
).
10.
K. A.
Sharp
and
B.
Honig
,
Annu. Rev. Biophys. Biophys. Chem.
19
,
301
(
1990
).
11.
Y. N.
Vorobjev
and
H. A.
Scheraga
,
J. Comput. Chem.
18
,
569
(
1997
).
12.
R. J.
Zauhar
and
R. S.
Morgan
,
J. Mol. Biol.
186
,
815
(
1985
).
13.
J.
Warwicker
and
H. C.
Watson
,
J. Mol. Biol.
154
,
671
(
1982
).
14.
F.
Fogolari
,
A.
Brigo
, and
H.
Molinari
,
Biophys. J.
85
,
159
(
2003
).
15.
P. A.
Kollman
,
I.
Massova
, and
C.
Reyes
 et al 
Acc. Chem. Res.
33
,
889
(
2000
).
16.
J. M. J.
Swanson
,
R. H.
Henchman
, and
J. A.
McCammon
,
Biophys. J.
86
,
67
(
2004
).
17.
R. E.
Georgescu
,
E. G.
Alexov
, and
M. R.
Gunner
,
Biophys. J.
83
,
1731
(
2002
).
18.
J. E.
Nielsen
and
J. A.
McCammon
,
Protein Sci.
12
,
313
(
2003
).
19.
J.
Warwicker
,
Protein Sci.
13
,
2793
(
2004
).
20.
Q.
Lu
and
R.
Luo
,
J. Chem. Phys.
119
,
11035
(
2003
).
21.
N. V.
Prabhu
,
P.
Zhu
, and
K. A.
Sharp
,
J. Comput. Chem.
25
,
2049
(
2004
).
22.
B. Z.
Lu
,
W. Z.
Chen
,
C. X.
Wang
, and
X. J.
Xu
,
Proteins
48
,
497
(
2002
).
23.
R.
Luo
,
L.
David
, and
M. K.
Gilson
,
J. Comput. Chem.
23
,
1244
(
2002
).
24.
W.
Im
,
D.
Beglov
, and
B.
Roux
,
Comput. Phys. Commun.
111
,
59
(
1998
).
25.
N. A.
Baker
,
D.
Sept
,
S.
Joseph
,
M. J.
Holst
, and
J. A.
McCammon
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
10037
(
2001
).
26.
N. A.
Baker
,
D.
Sept
,
M. J.
Holst
, and
J. A.
McCammon
,
IBM J. Res. Dev.
45
,
427
(
2001
).
27.
M.
Holst
and
F.
Saied
,
J. Comput. Chem.
14
,
105
(
1993
).
28.
A.
Bordner
and
G.
Huber
,
J. Comput. Chem.
24
,
353
(
2003
).
29.
A.
Boschitsch
,
M.
Fenley
, and
H.-X.
Zhou
,
J. Phys. Chem. B
106
,
2741
(
2002
).
30.
A.
Boschitsch
and
M.
Fenley
,
J. Comput. Chem.
25
,
935
(
2004
).
31.
A.
Juffer
,
E.
Botta
,
B.
van Keulen
,
A.
van der Ploeg
, and
H.
Berendsen
,
J. Comput. Phys.
97
,
144
(
1991
).
32.
J.
Liang
and
S.
Subranmaniam
,
Biophys. J.
73
,
1830
(
1997
).
33.
B. Z.
Lu
,
X. L.
Cheng
,
J. F.
Huang
, and
J. A.
McCammon
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
19314
(
2006
).
34.
I.
Klapper
,
R.
Hagstrom
,
R.
Fine
,
K.
Sharp
, and
B.
Honig
,
Proteins
1
,
47
(
1986
).
35.
W.
Rocchia
,
E.
Alexov
, and
B.
Honig
,
J. Phys. Chem. B
105
,
6507
(
2001
).
36.
M. E.
Davis
,
J. D.
Madura
,
B. A.
Luty
, and
J. A.
McCammon
,
Comput. Phys. Commun.
62
,
187
(
1991
).
37.
M.
Holst
,
N.
Baker
, and
F.
Wang
,
J. Comput. Chem.
21
,
1319
(
2000
).
38.
N.
Baker
,
M.
Holst
, and
F.
Wang
,
J. Comput. Chem.
21
,
1343
(
2000
).
39.
B. R.
Brooks
,
R. E.
Bruccoleri
,
B. D.
Olafson
,
D. J.
States
,
S.
Swaminathan
, and
M.
Karplus
,
J. Comput. Chem.
4
,
187
(
1983
).
40.
M. L.
Connolly
,
J. Appl. Crystallogr.
18
,
499
(
1985
).
41.
B.
Lee
and
F. M.
Richards
,
J. Mol. Biol.
55
,
379
(
1971
).
42.
F.
Eisenhaber
and
P.
Argos
,
J. Comput. Chem.
14
,
1272
(
1993
).
43.
V.
Gogonea
and
E.
Osawa
,
Supramol. Chem.
3
,
303
(
1994
).
44.
M. F.
Sanner
,
A. J.
Olson
, and
J. C.
Spehner
,
Biopolymers
38
,
305
(
1996
).
45.
C. S.
Peskin
,
J. Comput. Phys.
25
,
220
(
1977
).
46.
R. P.
Fedkiw
,
T.
Aslam
,
B.
Merriman
, and
S.
Osher
,
J. Comput. Phys.
152
,
457
(
1999
).
47.
X. D.
Liu
,
R. P.
Fedkiw
, and
M.
Kang
,
J. Comput. Phys.
160
,
151
(
2000
).
48.
I.
Babuška
,
Computing
5
,
207
(
1970
).
49.
J.
Bramble
and
J.
King
,
Adv. Comput. Math.
6
,
109
(
1996
).
50.
Z. L.
Li
,
T.
Lin
, and
X. H.
Wu
,
Numer. Math.
96
,
61
(
2003
).
51.
W. K.
Liu
,
Y.
Liu
,
D.
Farrell
 et al,
Comput. Methods Appl. Mech. Eng.
195
,
1722
(
2006
).
52.
W.
Cai
and
S. Z.
Deng
,
J. Comput. Phys.
190
,
159
(
2003
).
53.
F.
Gibou
and
R. P.
Fedkiw
,
J. Comput. Phys.
202
,
577
(
2005
).
54.
A.
Mayo
,
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
21
,
285
(
1984
).
55.
R. J.
LeVeque
and
Z. L.
Li
,
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
31
,
1019
(
1994
).
56.
Z. H.
Qiao
,
Z. L.
Li
, and
T.
Tang
,
J. Comput. Math.
24
,
252
(
2006
).
57.
S.
Zhao
and
G. W.
Wei
,
J. Comput. Phys.
200
,
60
(
2004
).
58.
Y. C.
Zhou
,
S.
Zhao
,
M.
Feig
, and
G. W.
Wei
,
J. Comput. Phys.
213
,
1
(
2006
).
59.
Y. C.
Zhou
and
G. W.
Wei
,
J. Comput. Phys.
219
,
228
(
2006
).
60.
Y. C.
Zhou
,
M.
Feig
, and
G. W.
Wei
,
J. Comput. Chem.
(to be published).
61.
S.
Hou
and
X.-D.
Liu
,
J. Comput. Phys.
202
,
411
(
2005
).
62.
S. N.
Yu
,
Y. C.
Zhou
, and
G. W.
Wei
,
J. Comput. Phys.
224
,
729
(
2007
).
63.
S. N.
Yu
,
W. H.
Geng
, and
G. W.
Wei
,
J. Chem. Phys.
126
,
244108
(
2006
).
64.
Z.
Zhou
,
P.
Payne
,
M.
Vasquez
,
N.
Kuhn
, and
M.
Levitt
,
J. Comput. Chem.
17
,
1344
(
1996
).
65.
I.-L.
Chern
,
J.-G.
Liu
, and
W.-C.
Wang
,
Methods Appl. Anal.
10
,
309
(
2003
).
66.
S. N.
Yu
and
G. W.
Wei
,
J. Comput. Phys.
(to be published).
67.
J. G.
Kirkwood
,
J. Chem. Phys.
7
,
351
(
1934
).
68.
M.
Holst
, Ph.D. thesis,
University of Illinois at Urbana-Champaign
,
1993
.
69.
M.
Feig
,
A.
Onufriev
,
M. S.
Lee
,
W.
Im
,
D. A.
Case
, and
C. L.
Brooks
 III
,
J. Comput. Chem.
25
,
265
(
2004
).
70.
A. D.
MacKerell
, Jr.
,
D.
Bashford
,
M.
Bellott
 et al,
J. Phys. Chem.
102
,
3586
(
1998
).
You do not currently have access to this content.