We present a library of Gaussian basis sets that has been specifically optimized to perform accurate molecular calculations based on density functional theory. It targets a wide range of chemical environments, including the gas phase, interfaces, and the condensed phase. These generally contracted basis sets, which include diffuse primitives, are obtained minimizing a linear combination of the total energy and the condition number of the overlap matrix for a set of molecules with respect to the exponents and contraction coefficients of the full basis. Typically, for a given accuracy in the total energy, significantly fewer basis functions are needed in this scheme than in the usual split valence scheme, leading to a speedup for systems where the computational cost is dominated by diagonalization. More importantly, binding energies of hydrogen bonded complexes are of similar quality as the ones obtained with augmented basis sets, i.e., have a small (down to 0.2kcalmol) basis set superposition error, and the monomers have dipoles within 0.1D of the basis set limit. However, contrary to typical augmented basis sets, there are no near linear dependencies in the basis, so that the overlap matrix is always well conditioned, also, in the condensed phase. The basis can therefore be used in first principles molecular dynamics simulations and is well suited for linear scaling calculations.

1.
J.
VandeVondele
and
J.
Hutter
,
J. Chem. Phys.
118
,
4365
(
2003
).
2.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
3.
M.
Sulpizi
,
S.
Raugei
,
J.
VandeVondele
,
P.
Carloni
, and
M.
Sprik
,
J. Phys. Chem. B
111
,
3969
(
2007
).
4.
I.-F. W.
Kuo
,
C. J.
Mundy
,
M. J.
McGrath
 et al,
J. Phys. Chem. B
108
,
12990
(
2004
).
5.
J.
VandeVondele
,
F.
Mohamed
,
M.
Krack
,
J.
Hutter
,
M.
Sprik
, and
M.
Parrinello
,
J. Chem. Phys.
122
,
014515
(
2005
).
6.
M.
McGrath
,
J.
Siepmann
,
I.-F. W.
Kuo
,
C.
Mundy
,
J.
VandeVondele
,
J.
Hutter
,
F.
Mohamed
, and
M.
Krack
,
ChemPhysChem
6
,
1894
(
2005
).
7.
M. J.
McGrath
,
J.
Siepmann
,
I.-F. W.
Kuo
,
C.
Mundy
,
J.
VandeVondele
,
J.
Hutter
,
F.
Mohamed
, and
M.
Krack
,
J. Phys. Chem. A
110
,
640
(
2006
).
8.
S. F.
Boys
,
Proc. R. Soc. London, Ser. A
200
,
542
(
1950
).
9.
10.
J.
Ihm
,
A.
Zunger
, and
M. L.
Cohen
,
J. Phys. C
12
,
4409
(
1979
).
11.
D.
Marx
and
J.
Hutter
, in
Modern Methods and Algorithms of Quantum Chemistry
,
NIC Series
Vol.
1
, edited by
J.
Grotendorst
(
FZ Jülich
,
Germany
,
2000
), pp.
329
477
;
12.
K.
Cho
,
T. A.
Arias
,
J. D.
Joannopoulos
, and
P. K.
Lam
,
Phys. Rev. Lett.
71
,
1808
(
1993
).
13.
B.
Delley
,
J. Chem. Phys.
92
,
508
(
1990
).
14.
E. R.
Davidson
and
D.
Feller
,
Chem. Rev. (Washington, D.C.)
86
,
681
(
1986
).
15.
S.
Huzinaga
,
J.
Andzelm
,
M.
Klobukowsi
,
E.
Radzio-Andzelm
,
Y.
Sakai
, and
H.
Tatewaki
,
Gaussian Basis Sets for Molecular Calculations
(
Elsevier
,
Amsterdam
,
1984
).
16.
F.
Jensen
,
J. Chem. Phys.
115
,
9113
(
2001
).
17.
F.
Jensen
,
J. Chem. Phys.
116
,
7372
(
2002
).
18.
S.
Goedecker
and
G. E.
Scuseria
,
Comput. Sci. Eng.
5
,
14
(
2003
).
19.
G.
Lippert
,
J.
Hutter
, and
M.
Parrinello
,
Mol. Phys.
92
,
477
(
1997
).
20.
G.
Lippert
,
J.
Hutter
, and
M.
Parrinello
,
Theor. Chem. Acc.
103
,
124
(
1999
).
21.
S.
Goedecker
,
Rev. Mod. Phys.
71
,
1085
(
1999
).
22.
R. C.
Raffenetti
,
J. Chem. Phys.
58
,
4452
(
1973
).
23.
M. S.
Lee
and
M.
Head-Gordon
,
J. Chem. Phys.
107
,
9085
(
1997
).
24.
M. S.
Lee
and
M.
Head-Gordon
,
Computers & Chemistry
24
,
295
(
2000
).
25.
G.
Berghold
,
M.
Parrinello
, and
J.
Hutter
,
J. Chem. Phys.
116
,
1800
(
2002
).
26.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
27.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
,
Phys. Rev. B
58
,
3641
(
1998
).
28.
M.
Krack
,
Theor. Chem. Acc.
114
,
145
(
2005
).
29.
The CP2K developers group
, http://cp2k.berlios.de/ (
2007
).
30.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
31.
See EPAPS Document No. E-JCPSA6-127-308733 for the exponents and coefficients of the molecularly optimized basis sets. This document can be reached through a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
32.
G.
Lippert
,
J.
Hutter
,
P.
Ballone
, and
M.
Parrinello
,
J. Chem. Phys.
100
,
6231
(
1996
).
33.
M. J. D.
Powell
,
Math. Program.
92
,
555
(
2002
).
34.
J.
Hutter
 et al, CPMD (Car-Parrinello Molecular Dynamics), an Ab Initio Electronic Structure and Molecular Dynamics Program, IBM Zurich Research Laboratory (1990-2007) and Max-Planck-Institut für Festkörperforschung Stuttgart (
1997–2001
), http://www.cpmd.org/
35.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, Revision C.02,
Gaussian, Inc.
, Wallingford CT,
2004
.
36.
J.
VandeVondele
,
R.
Lynden-Bell
,
E. J.
Meijer
, and
M.
Sprik
,
J. Phys. Chem. B
110
,
3614
(
2006
).
37.
I.-F. W.
Kuo
and
C. J.
Mundy
,
Science
303
,
658
(
2004
).
38.
C. J.
Mundy
and
I.-F. W.
Kuo
,
Chem. Rev. (Washington, D.C.)
106
,
1282
(
2006
).
39.
M. J.
McGrath
,
J. I.
Siepmann
,
I.-F. W.
Kuo
, and
C. J.
Mundy
,
Mol. Phys.
104
,
3619
(
2006
).
40.
J.
VandeVondele
,
M.
Sulpizi
, and
M.
Sprik
,
Angew. Chem., Int. Ed.
45
,
1936
(
2006
).
41.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
);
S. F.
Boys
and
F.
Bernardi
,[
Mol. Phys.
100
,
65
(
2002
) (reprinted)].

Supplementary Material

You do not currently have access to this content.