Silver nanodimers with a small gap of a few nanometers aligned on glass substrates were used to enhance hyper-Raman scattering of crystal violet dye molecules. When localized surface plasmon of the dimer array was resonantly excited along the interparticle axis, hyper-Raman intensity was significantly enhanced. Moreover, the spectral appearance was slightly different between the two excitation polarizations, suggesting a possibility of two resonance contributions at one-photon and two-photon energies. Since the plasmonic property of dimer arrays can be controlled by the dimer geometry, the dimer arrays are expected to be well-defined substrates for surface-enhanced hyper-Raman spectroscopy.

1.
A.
Otto
,
I.
Mrozek
,
H.
Grabhom
, and
W.
Akemann
,
J. Phys.: Condens. Matter
4
,
1143
(
1992
).
2.
F. J.
Garcia-Vidal
and
J. B.
Pendry
,
Phys. Rev. Lett.
77
,
1163
(
1996
).
3.
Y.
Yang
,
G. C.
Schatz
, and
R. P.
Van Duyne
,
J. Chem. Phys.
103
,
869
(
1995
).
4.
S. M.
Nie
and
S. R.
Emery
,
Science
275
,
1102
(
1997
).
5.
K.
Kneipp
,
Y.
Wang
,
H.
Kneipp
,
L. T.
Perelman
,
I.
Itzkan
,
R.
Dasari
, and
M. S.
Feld
,
Phys. Rev. Lett.
78
,
1667
(
1997
).
6.
A. M.
Michaels
,
M.
Nirmal
, and
L. E.
Brus
,
J. Am. Chem. Soc.
121
,
9932
(
1999
).
7.
E.
Hao
and
G. C.
Schatz
,
J. Chem. Phys.
120
,
357
(
2004
).
8.
P.
Nordlander
,
C.
Oubre
,
E.
Prodan
,
K.
Li
, and
M. I.
Stockman
,
Nano Lett.
4
,
899
(
2004
).
9.
P. K.
Aravind
,
A.
Nitzan
, and
H.
Metiu
,
Surf. Sci.
110
,
189
(
1981
).
10.
P. K.
Aravind
and
H.
Metiu
,
J. Phys. Chem.
86
,
5076
(
1982
).
11.
P. K.
Aravind
and
H.
Metiu
,
Surf. Sci.
124
,
506
(
1983
).
12.
C. L.
Haynes
,
A. D.
McFarland
,
M. T.
Smith
,
J. C.
Hulteen
, and
R. P.
Van Duyne
,
J. Phys. Chem. B
106
,
1898
(
2002
).
13.
Y.
Sawai
,
B.
Takimoto
,
H.
Nabika
,
K.
Ajito
, and
K.
Murakoshi
,
Faraday Discuss.
132
,
179
(
2006
);
[PubMed]
Y.
Sawai
,
B.
Takimoto
,
H.
Nabika
,
K.
Ajito
, and
K.
Murakoshi
,
J. Am. Chem. Soc.
129
,
1658
(
2007
).
[PubMed]
14.
J.
Kneipp
,
H.
Kneip
, and
K.
Kneipp
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
17149
(
2006
).
15.
V. N.
Denisov
,
B. N.
Mavrin
, and
V. B.
Podobedov
,
Phys. Rep.
151
,
1
(
1987
).
16.
S. J.
Cyvin
,
J. E.
Rauch
, and
J. C.
Decius
,
J. Chem. Phys.
43
,
4083
(
1965
).
17.
J. H.
Christie
and
D. J.
Lockwood
,
J. Chem. Phys.
54
,
1141
(
1971
).
18.
K.
Kneipp
,
H.
Kneipp
,
I.
Itzkan
,
R. R.
Dasari
, and
M. S.
Feld
,
Chem. Phys.
247
,
155
(
1999
).
19.
W.-H.
Yang
,
J.
Hulteen
,
G. C.
Schatz
, and
R. P.
Van Duyne
,
J. Chem. Phys.
104
,
4313
(
1996
).
20.
W.-H.
Li
,
X.-Y.
Li
, and
N.-T.
Yu
,
Chem. Phys. Lett.
327
,
153
(
2000
).
21.
W.
Leng
,
H. Y.
Woo
,
D.
Vak
,
G. C.
Bazan
, and
A. M.
Kelley
,
J. Raman Spectrosc.
37
,
132
(
2006
).
22.
C.
Dhenaut
,
I.
Ledoux
,
I. D. W.
Samuel
, and
J.
Zyss
,
Nature (London)
374
,
339
(
1995
).
23.
K.
Ikeda
,
Y.
Saito
,
N.
Hayazawa
,
S.
Kawata
, and
K.
Uosaki
,
Chem. Phys. Lett.
438
,
109
(
2007
).
24.
F. C.
Adam
and
W. T.
Simpson
,
J. Mol. Spectrosc.
3
,
363
(
1959
).
25.
D. F.
Duxbury
,
Chem. Rev. (Washington, D.C.)
93
,
381
(
1993
).
26.
L.
Angeloni
,
G.
Smulevich
, and
M. P.
Marzocchi
,
J. Raman Spectrosc.
8
,
305
(
1979
).
27.
A. Y.
Hirakawa
and
M.
Tsuboi
,
Indian J. Pure Appl. Phys.
16
,
176
(
1978
).
28.
Y. C.
Chou
,
N. T.
Liang
, and
W. S.
Tse
,
J. Raman Spectrosc.
17
,
481
(
1986
).
29.

The difference in the bandwidth has no intrinsic information because it was due to the relatively broad bandwidth of the excitation pulses.

30.
Y. C.
Chung
and
L. D.
Ziegler
,
J. Chem. Phys.
88
,
7287
(
1988
).
You do not currently have access to this content.