In cell biology, cell signaling pathway problems are often tackled with deterministic temporal models, well mixed stochastic simulators, and/or hybrid methods. But, in fact, three dimensional stochastic spatial modeling of reactions happening inside the cell is needed in order to fully understand these cell signaling pathways. This is because noise effects, low molecular concentrations, and spatial heterogeneity can all affect the cellular dynamics. However, there are ways in which important effects can be accounted without going to the extent of using highly resolved spatial simulators (such as single-particle software), hence reducing the overall computation time significantly. We present a new coarse grained modified version of the next subvolume method that allows the user to consider both diffusion and reaction events in relatively long simulation time spans as compared with the original method and other commonly used fully stochastic computational methods. Benchmarking of the simulation algorithm was performed through comparison with the next subvolume method and well mixed models (MATLAB), as well as stochastic particle reaction and transport simulations (CHEMCELL, Sandia National Laboratories). Additionally, we construct a model based on a set of chemical reactions in the epidermal growth factor receptor pathway. For this particular application and a bistable chemical system example, we analyze and outline the advantages of our presented binomial τ-leap spatial stochastic simulation algorithm, in terms of efficiency and accuracy, in scenarios of both molecular homogeneity and heterogeneity.

1.
K.
Burrage
,
M.
Hegland
,
S.
MacNamara
, and
R. B.
Sidje
,
Proceedings of the Markov 150th Anniversary Conference
, edited by
A. N.
Langville
and
W. J.
Stewart
(
Boson Books
,
Raleigh, NC
,
2006
), pp.
21
38
.
2.
A.
Bortz
,
M.
Kalos
, and
J.
Lebowitz
,
J. Comput. Phys.
17
,
10
(
1975
).
3.
D.
Gillespie
,
J. Phys. Chem.
81
,
2340
(
1977
).
4.
M. A.
Gibson
and
J.
Bruck
,
J. Phys. Chem.
104
,
1876
(
2000
).
5.
D.
Gillespie
,
J. Chem. Phys.
115
,
1716
(
2001
).
6.
D.
Gillespie
and
L.
Petzold
,
J. Chem. Phys.
119
,
8229
(
2003
).
7.
T.
Tianhai
and
K.
Burrage
,
J. Chem. Phys.
121
,
10356
(
2004
).
8.
T.
Turner
,
S.
Schnell
, and
K.
Burrage
,
Comput. Biol. Chem.
28
,
165
(
2004
).
9.
C. J.
Morton-Firth
and
D.
Bray
,
J. Theor. Biol.
192
,
117
(
1998
).
10.
D. V.
Nicolau
, Jr.
,
K.
Burrage
,
R. G.
Parton
, and
J. F.
Hancock
,
Mol. Cell. Biol.
26
,
313
(
2006
).
11.
S.
Plimpton
and
A.
Slepoy
,
ChemCell: A Particle-Based Model of Protein Chemistry and Diffusion in Microbial Cells
,
Sandia National Laboratories
, Technical Report SAND2003–4509 (
2003
).
14.
J.
Elf
and
M.
Ehrenberg
,
Systems Biology
2
,
230
(
2004
).
15.
J.
Elf
,
A.
Doncic
, and
M.
Ehrenberg
,
Proc. SPIE
5110
,
114
(
2003
).
16.
J.
Hattne
,
D.
Fange
, and
J.
Elf
,
Bioinformatics
21
,
2923
(
2005
).
17.
T.
Marquez-Lago
,
S.
Steinberg
,
A.
Slepoy
,
B. S.
Wilson
, and
K. K.
Leslie
, “Numerical estimation of ERK-mediated clustered progesterone transcription factor formation” (unpublished).
18.
T.
Marquez-Lago
, Ph.D. dissertation,
University of New Mexico
.
19.
M.
Qiu
,
A.
Olsen
,
E.
Faivre
,
K. B.
Horwitz
, and
C. A.
Lange
,
Mol. Endocrinol.
17
,
628
(
2003
).
20.
R.
Arnett-Mansfield
,
A.
DeFazio
,
P.
Mote
, and
C.
Clarke
,
J. Clin. Endocrinol. Metab.
89
,
1429
(
2004
).
You do not currently have access to this content.