The complex heat capacity Cp* of poly(vinyl acetate) has been measured at 20.95mrads modulation frequency during the cooling as well as on heating at 24, 8, and 2Kh and during cooling at 0.5Kh. The study is complemented with (the rate-dependent) Cp,app measured during cooling and heating at 60, 24, and 8Kh. At low temperatures, the real component of Cp* yields the unrelaxed Cp or Cp,vib, the vibrational part of Cp. It is found to be indistinguishable from Cp,glass and lies on a line extrapolated to its equilibrium melt’s temperature. At T near Tg,ΔCp(=Cp,meltCp,glass) shows no detectable contribution from Cp,vib. The finding conflicts with a modified entropy theory calculation [E. A. DiMarzio and F. Dowell, J. Appl. Phys.50, 6061 (1979)], which had predicted that 27% of ΔCp of poly(vinyl acetate) at T near Tg is vibrational in origin and the remainder configurational. At T<Tg, the real component of Cp* varies more slowly with T than Cp,app.

1.
J. H.
Gibbs
,
J. Chem. Phys.
25
,
185
(
1956
).
2.
J. H.
Gibbs
and
E. A.
DiMarzio
,
J. Chem. Phys.
28
,
372
(
1958
).
3.
E. A.
DiMarzio
and
J. H.
Gibbs
,
J. Chem. Phys.
28
,
807
(
1958
).
4.
G.
Adam
and
J. H.
Gibbs
,
J. Chem. Phys.
43
,
139
(
1965
).
5.
E. A.
DiMarzio
and
F.
Dowell
,
J. Appl. Phys.
50
,
6061
(
1979
).
6.
G. P.
Johari
,
J. Non-Cryst. Solids
307–310
,
387
(
2002
).
7.
M.
Goldstein
,
Phys. Rev. B
71
,
136201
(
2005
).
8.
G. P.
Johari
,
J. Chem. Phys.
126
,
114901
(
2007
).
9.
A. J.
Kovacs
,
Fortschr. Hochpolym.-Forsch.
3
,
394
(
1963
).
10.
A.
Boller
,
C.
Schick
, and
B.
Wunderlich
,
Thermochim. Acta
266
,
97
(
1995
);
see also papers in
A.
Boller
,
C.
Schick
, and
B.
Wunderlich
,
Thermochim. Acta
304–305
, (
1997
), special issue on calorimetry;
A.
Boller
,
C.
Schick
, and
B.
Wunderlich
,
Thermochim. Acta
377
, (
2001
), special issue on calorimetry.
11.
S. L.
Simon
,
Thermochim. Acta
374
,
55
(
2001
).
12.
G.
Salvetti
,
C.
Cardelli
,
C.
Ferrari
, and
E.
Tombari
,
Thermochim. Acta
364
,
11
(
2000
).
13.
G.
Salvetti
,
E.
Tombari
,
L.
Mikheeva
, and
G. P.
Johari
,
J. Phys. Chem. B
106
,
6081
(
2002
).
14.
E.
Tombari
,
C.
Ferrari
,
G.
Salvetti
, and
G. P.
Johari
,
J. Chem. Phys.
126
,
021107
(
2007
).
15.
E.
Tombari
,
C.
Ferrari
,
G.
Salvetti
, and
G. P.
Johari
,
J. Chem. Phys.
123
,
051104
(
2005
).
16.
E.
Tombari
,
C.
Ferrari
,
G.
Salvetti
, and
G. P.
Johari
,
J. Chem. Phys.
126
,
124506
(
2007
).
17.
E.
Tombari
,
S.
Presto
,
G. P.
Johari
, and
R. M.
Shanker
,
J. Pharm. Sci.
95
,
1006
(
2006
).
18.
W.
Pascheto
,
M. G.
Parthun
,
A.
Hallbrucker
, and
G. P.
Johari
,
J. Non-Cryst. Solids
171
,
182
(
1994
).
19.
S.
Weyer
,
M.
Merzlyakov
, and
C.
Schick
,
Thermochim. Acta
377
,
85
(
2001
).
20.
S.
Weyer
,
H.
Huth
, and
C.
Schick
,
Polymer
46
,
12240
(
2005
); The data on poly(styrene) and bisphenol A-poly(carbonate) in Refs. 19 and 20 could also be analyzed in the manner described here, but their Cp data were presented on a reduced scale. Without the details of reduction parameters, those data could not be converted to the absolute values for our analysis.
21.
M.
Goldstein
,
J. Chem. Phys.
64
,
4767
(
1976
).
22.
G. P.
Johari
,
Philos. Mag. B
41
,
41
(
1981
).
23.
G. P.
Johari
,
J. Chem. Phys.
58
,
1766
(
1973
).
24.
N. G.
McCrum
,
B. E.
Read
, and
G.
Williams
,
Anelastic and Dielectric Effects in Polymeric Solids
(
Wiley
,
New York
,
1967
).
25.
E.
Muzeau
,
J.
Perez
, and
G. P.
Johari
,
Macromolecules
24
,
4713
(
1991
).
26.
G. P.
Johari
,
J. Chem. Phys.
112
,
7518
(
2000
).
27.
G. P.
Johari
,
J. Phys. Chem. B
105
,
3600
(
2001
).
28.
29.
G. P.
Johari
,
C.
Ferrari
,
E.
Tombari
, and
G.
Salvetti
,
J. Chem. Phys.
110
,
11592
(
1999
).
30.
J.
Wang
and
G. P.
Johari
,
J. Non-Cryst. Solids
281
,
91
(
2001
).
You do not currently have access to this content.