We present a data reduction and visualization approach for the microdomain dynamics in block copolymers and similar structured fluids. Microdomains are reduced to thin smooth lines with colored branching points and visualized with a tool for protein visualization. As a result the temporal evolution of large volume data sets can be perceived within seconds. This approach is demonstrated with simulation results based on the dynamic density functional theory of the ordering of microdomains in a thin film of block copolymers. As an example we discuss the dynamics at the cylinder-to-gyroid grain boundary and compare it to the epitaxial cylinder-to-gyroid phase transition predicted by Matsen [Phys. Rev. Lett.80, 4470 (1998)].

1.
I. W.
Hamley
,
The Physics of Block Copolymers
(
Oxford University Press
,
Oxford
,
1998
).
2.
C.
Park
,
J.
Yoon
, and
E. L.
Thomas
,
Polymer
44
,
6725
(
2003
).
3.
K.
Katsov
,
M.
Müller
, and
M.
Schick
,
Biophys. J.
87
,
3277
(
2004
);
[PubMed]
K.
Katsov
,
M.
Müller
, and
M.
Schick
,
Biophys. J.
90
,
915
(
2006
).
[PubMed]
4.
S.
Hyde
,
S.
Andersson
,
K.
Larsson
,
Z.
Blum
,
T.
Landh
,
S.
Lidin
, and
B. W.
Ninham
,
The Language of Shape
(
Elsevier Science
,
Amsterdam
,
1997
).
5.
H.
Jinnai
,
Y.
Nishikawa
,
R. J.
Spontak
,
S. D.
Smith
,
D. A.
Agard
, and
T.
Hashimoto
,
Phys. Rev. Lett.
84
,
518
(
2000
).
6.
T.
Xu
,
A. V.
Zvelindovsky
,
G. J. A.
Sevink
,
K. S.
Lyakhova
,
H.
Jinnai
, and
T. P.
Russell
,
Macromolecules
38
,
10788
(
2005
).
8.
For a review, see,
G. H.
Fredrickson
,
V.
Ganesan
, and
F.
Drolet
,
Macromolecules
25
,
16
(
2002
).
9.
A. V.
Zvelindovsky
,
G. J. A.
Sevink
,
B. A. C.
van Vlimmeren
,
N. M.
Maurits
, and
J. G. E. M.
Fraaije
,
Phys. Rev. E
57
,
R4879
(
1998
).
10.
A. V.
Zvelindovsky
and
G. J. A.
Sevink
,
Europhys. Lett.
62
,
370
(
2003
).
11.
A. V.
Zvelindovsky
,
G. J. A.
Sevink
, and
J. G. E. M.
Fraaije
,
Phys. Rev. E
62
,
R3063
(
2000
).
12.
B.
Lichtenbelt
,
R.
Crane
, and
S.
Naqvi
,
Introduction to Volume Rendering
(
Prentice-Hall PTR
,
Upper Saddle River, NJ
,
1998
).
13.
A.
Knoll
,
K. S.
Lyakhova
,
A.
Horvat
,
G.
Krausch
,
G. J. A.
Sevink
,
A. V.
Zvelindovsky
, and
R.
Magerle
,
Nat. Mater.
3
,
886
(
2004
).
14.
L.
Tsarkova
,
A.
Horvat
,
G.
Krausch
,
A. V.
Zvelindovsky
,
G. J. A.
Sevink
, and
R.
Magerle
,
Langmuir
22
,
8089
(
2006
).
15.
K. S.
Lyakhova
,
A.
Horvat
,
A. V.
Zvelindovsky
, and
G. J. A.
Sevink
,
Langmuir
22
,
5848
(
2006
).
16.
T.
Xu
,
A. V.
Zvelindovsky
,
G. J. A.
Sevink
,
O.
Gang
,
B.
Ocko
,
Y.
Zhu
,
S. P.
Gido
, and
T. P.
Russell
,
Macromolecules
37
,
6980
(
2004
).
17.
I. W.
Hamley
,
V.
Castelletto
,
O. O.
Mykhaylyk
, and
Z.
Yang
,
Langmuir
20
,
10785
(
2004
).
18.
K.
Schmidt
,
A.
Böker
,
H.
Zettl
 et al,
Langmuir
21
,
11974
(
2005
).
19.
K. S.
Lyakhova
,
A. V.
Zvelindovsky
, and
G. J. A.
Sevink
,
Macromolecules
39
,
3024
(
2006
).
20.
K.
Schmidt
,
H. G.
Schoberth
,
F.
Schubert
,
H.
Hänsel
,
F.
Fischer
,
T. M.
Weiss
,
G. J. A.
Sevink
,
A. V.
Zvelindovsky
,
A.
Böker
, and
G.
Krausch
,
Soft Matter
3
,
448
(
2007
).
21.
A. V.
Zvelindovsky
and
G. J. A.
Sevink
,
Phys. Rev. Lett.
90
,
049601
(
2003
);
[PubMed]
A. V.
Kyrylyuk
,
A. V.
Zvelindovsky
,
G. J. A.
Sevink
, and
J. G. E. M.
Fraaije
,
Macromolecules
35
,
508
(
2002
).
22.
See, e.g., Fig. 10 in Ref. 6; Figs. 6 and 7 in Ref. 10; and Figs. 3, 6, 9, and 11 in Ref. 11.
23.
See, e.g., Figs. 1, 3, and 4 in Ref. 9.
24.
D.
Hoffman
,
Nature (London)
384
,
28
(
1996
).
25.
See, e.g., Figs. 16, 17, and 18 in
M. E.
Vigild
,
K.
Almdal
,
K.
Mortensen
,
I. W.
Hamley
,
J. P. A.
Fairclough
, and
A. J.
Ryan
,
Macromolecules
31
,
5702
(
1998
).
26.
G. E.
Schröder-Turk
,
A.
Fogden
, and
S. T.
Hyde
,
Eur. Phys. J. B
54
,
509
(
2007
).
27.
A.
Horvat
,
K. S.
Lyakhova
,
G. J. A.
Sevink
,
A. V.
Zvelindowvsky
, and
R.
Magerle
,
J. Chem. Phys.
120
,
1117
(
2004
).
28.
M. W.
Matsen
,
Phys. Rev. Lett.
80
,
4470
(
1998
).
29.
J. G. E. M.
Fraaije
,
J. Chem. Phys.
99
,
9202
(
1993
);
J. G. E. M.
Fraaije
,
B. A. C.
van Vlimmeren
,
N. M.
Maurits
,
M.
Postma
,
O. A.
Evers
,
C.
Hoffmann
,
P.
Altevogt
, and
G.
Goldbeck-Wood
,
J. Chem. Phys.
106
,
4260
(
1997
);
G. J. A.
Sevink
,
A. V.
Zvelindovsky
,
B. A. C.
van Vlimmeren
,
N. M.
Maurits
, and
J. G. E. M.
Fraaije
,
J. Chem. Phys.
110
,
2250
(
1999
).
30.
A.
Knoll
,
A.
Horvat
,
K. S.
Lyakhova
,
G.
Krausch
,
G. J. A.
Sevink
,
A. V.
Zvelindovsky
, and
R.
Magerle
,
Phys. Rev. Lett.
89
,
035501
(
2002
).
31.
A.
Knoll
,
R.
Magerle
, and
G.
Krausch
,
J. Chem. Phys.
120
,
1115
(
2004
).
32.
K. S.
Lyakhova
,
A.
Horvat
,
R.
Magerle
,
G. J. A.
Sevink
, and
A. V.
Zvelindovsky
,
J. Chem. Phys.
120
,
1127
(
2004
).
33.
L.
Lam
,
S.-W.
Lee
, and
C. Y.
Suen
,
IEEE Trans. Pattern Anal. Mach. Intell.
14
,
869
(
1992
).
34.
M. W.
Jones
,
J. A.
Bærentzen
, and
M.
Sramek
,
IEEE Trans. Vis. Comput. Graph.
12
,
581
(
2006
).
35.
T.
Grigorishin
,
G.
Abdel-Hamid
, and
Y.-H.
Yang
,
Pattern Analysis and Applications
1
,
163
(
1998
).
36.
Y. F.
Tsao
and
K. S.
Fu
,
Comput. Graph. Image Process.
17
,
315
(
1981
).
37.
F. C.
Bernstein
,
T. F.
Koetzle
,
G. J. B.
Williams
,
E. F.
Meyer
,Jr.
,
M. D.
Brice
,
J. R.
Rodgers
,
O.
Kennard
,
T.
Shimanouchi
, and
M.
Tasumi
,
J. Mol. Biol.
112
,
535
(
1977
);
[PubMed]
H. M.
Berman
,
J.
Westbrook
,
Z.
Feng
,
G.
Gilliland
,
T. N.
Bhat
,
H.
Weissig
,
I. N.
Shindyalov
, and
P. E.
Bourne
,
Nucleic Acids Res.
28
,
235
(
2000
);
[PubMed]
38.
See EPAPS Document No. E-JCPSA6-127-004725 for illustration of the pruning algorithm and two movies of the microdomain dynamics corresponding to Figs. 3 and 5, respectively. This document can be reached through a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
39.
W. L.
DeLano
, PYMOL, DeLano Scientific, San Carlos, CA,
2002
;
40.
G. J. A.
Sevink
and
A. V.
Zvelindovsky
,
J. Chem. Phys.
121
,
3864
(
2004
).
41.
L.
Tsarkova
,
A.
Knoll
, and
R.
Magerle
,
Nano Lett.
6
,
1574
(
2006
).

Supplementary Material

You do not currently have access to this content.