The accurate description of molecule-surface interactions requires a detailed knowledge of the underlying potential-energy surface (PES). Recently, neural networks (NNs) have been shown to be an efficient technique to accurately interpolate the PES information provided for a set of molecular configurations, e.g., by first-principles calculations. Here, we further develop this approach by building the NN on a new type of symmetry functions, which allows to take the symmetry of the surface exactly into account. The accuracy and efficiency of such symmetry-adapted NNs is illustrated by the application to a six-dimensional PES describing the interaction of oxygen molecules with the Al(111) surface.

1.
C.
Engdahl
,
B. I.
Lundqvist
,
U.
Nielsen
, and
J. K.
Nørskov
,
Phys. Rev. B
45
,
11362
(
1992
).
2.
A.
Gross
,
S.
Wilke
, and
M.
Scheffler
,
Phys. Rev. Lett.
75
,
2718
(
1995
).
3.
G.
Wiesenekker
,
G. J.
Kroes
, and
E. J.
Baerends
,
J. Chem. Phys.
104
,
7344
(
1996
).
4.
A.
Gross
and
M.
Scheffler
,
Phys. Rev. B
57
,
2493
(
1998
).
5.
C. M.
Wei
,
A.
Gross
, and
M.
Scheffler
,
Phys. Rev. B
57
,
15572
(
1998
).
6.
D. E.
Makarov
and
H.
Metiu
,
J. Chem. Phys.
108
,
590
(
1998
).
7.
R. P. A.
Bettens
and
M. A.
Collins
,
J. Chem. Phys.
111
,
816
(
1999
).
8.
C.
Crespos
,
M. A.
Collins
,
E.
Pijper
, and
G. J.
Kroes
,
Chem. Phys. Lett.
376
,
566
(
2003
).
9.
C.
Crespos
,
M. A.
Collins
,
E.
Pijper
, and
G. J.
Kroes
,
J. Chem. Phys.
120
,
2392
(
2004
).
10.
G.
Kresse
,
Phys. Rev. B
62
,
8295
(
2000
).
11.
H. F.
Busnengo
,
W.
Dong
, and
A.
Salin
,
Chem. Phys. Lett.
320
,
328
(
2000
).
12.
C.
Crespos
,
H. F.
Busnengo
,
W.
Dong
, and
A.
Salin
,
J. Chem. Phys.
114
,
10954
(
2001
).
13.
A.
Gross
,
M.
Scheffler
,
M. J.
Mehl
, and
D. A.
Papaconstantopoulos
,
Phys. Rev. Lett.
82
,
1209
(
1999
).
14.
J.
Hertz
,
A.
Krogh
, and
R. G.
Palmer
,
Introduction to the Theory of Neural Computation
(
Addison-Wesley
,
Reading
, MA,
1996
).
15.
P. M.
Agrawal
,
L. M.
Raff
,
M. T.
Hagan
, and
R.
Komanduri
,
J. Chem. Phys.
124
,
134306
(
2006
).
16.
S.
Manzhos
and
T.
Carrington
 Jr.
,
J. Chem. Phys.
125
,
84109
(
2006
).
17.
F. V.
Prudente
,
P. H.
Acioli
, and
J. J. S.
Neto
,
J. Chem. Phys.
109
,
8801
(
1998
).
18.
F. V.
Prudente
and
J. J. S.
Neto
,
Chem. Phys. Lett.
287
,
585
(
1998
).
19.
L. M.
Raff
,
M.
Malshe
,
M.
Hagan
,
D. I.
Doughan
,
M. G.
Rockley
, and
R.
Komanduri
,
J. Chem. Phys.
122
,
84104
(
2005
).
20.
D. F. R.
Brown
,
M. N.
Gibbs
, and
D. C.
Clary
,
J. Chem. Phys.
105
,
7597
(
1996
).
21.
A. C. P.
Bittencourt
,
F. V.
Prudente
, and
J. D. M.
Vianna
,
Chem. Phys.
297
,
153
(
2004
).
22.
K. T.
No
,
B. H.
Chang
,
S. Y.
Kim
,
M. S.
Jhon
, and
H. A.
Scheraga
,
Chem. Phys. Lett.
271
,
152
(
1997
).
23.
G.
Cybenko
,
Math. Control, Signals, Syst.
2
,
303
(
1989
).
24.
K.
Hornik
,
M.
Stinchcombe
, and
H.
White
,
Neural Networks
2
,
359
(
1989
).
25.
T. B.
Blank
,
S. D.
Brown
,
A. W.
Calhoun
, and
D. J.
Doren
,
J. Chem. Phys.
103
,
4129
(
1995
).
26.
P. M.
Agrawal
,
A. N. A.
Samadh
,
L. M.
Raff
,
M. T.
Hagan
,
S. T.
Bukkapatnam
, and
R.
Komanduri
,
J. Chem. Phys.
123
,
224711
(
2005
).
27.
S.
Lorenz
,
A.
Gross
, and
M.
Scheffler
,
Chem. Phys. Lett.
395
,
210
(
2004
).
28.
S.
Lorenz
,
M.
Scheffler
, and
A.
Gross
,
Phys. Rev. B
73
,
115431
(
2006
).
29.
J.
Behler
,
B.
Delley
,
S.
Lorenz
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. Lett.
94
,
036104
(
2005
).
30.
J.
Behler
,
K.
Reuter
, and
M.
Scheffler
(unpublished).
31.
T. B.
Blank
and
S. D.
Brown
,
J. Chemom.
8
,
391
(
1994
).
32.
G. J.
Kroes
,
J. G.
Snijders
, and
R. C.
Mowrey
,
J. Chem. Phys.
103
,
5121
(
1995
).
33.
DMOL3, academic version;
B.
Delley
,
J. Chem. Phys.
92
,
508
(
1990
).
34.
B.
Delley
,
J. Chem. Phys.
113
,
7756
(
2000
).
35.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Nørskov
,
Phys. Rev. B
59
,
7413
(
1999
).
36.
J.
Behler
,
B.
Delley
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. B
75
,
115409
(
2007
).
37.
J.
Behler
, Ph.D. thesis,
Technical University Berlin
(
2004
);
38.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
You do not currently have access to this content.