A valence-type anion of the canonical tautomer of uracil has been characterized using explicitly correlated second-order Møller-Plesset perturbation theory (RI-MP2-R12) in conjunction with conventional coupled-cluster theory with single, double, and perturbative triple excitations. At this level of electron-correlation treatment and after inclusion of a zero-point vibrational energy correction, determined in the harmonic approximation at the RI-MP2 level of theory, the valence anion is adiabatically stable with respect to the neutral molecule by 40meV. The anion is characterized by a vertical detachment energy of 0.60eV. To obtain accurate estimates of the vertical and adiabatic electron binding energies, a scheme was applied in which electronic energy contributions from various levels of theory were added, each of them extrapolated to the corresponding basis-set limit. The MP2 basis-set limits were also evaluated using an explicitly correlated approach, and the results of these calculations are in agreement with the extrapolated values. A remarkable feature of the valence anionic state is that the adiabatic electron binding energy is positive but smaller than the adiabatic electron binding energy of the dipole-bound state.

1.
L.
Sanche
,
Mass Spectrom. Rev.
21
,
349
(
2002
).
2.
B.
Boudaïffa
,
P.
Cloutier
,
D.
Hunting
,
M. A.
Huels
, and
L.
Sanche
,
Science
287
,
1658
(
2000
).
3.
A. A.
Voityuk
,
M. E.
Michel-Beyerle
, and
N.
Rösch
,
Chem. Phys. Lett.
342
,
231
(
2001
).
4.
M. D.
Sevilla
and
D.
Becker
,
Royal Society of Chemistry Special Review on Electron Spin Resonance
(
Royal Society of Chemistry
,
London
,
1994
), Vol.
14
, Chap. 5, and references therein.
5.
C.
von Sonntag
, in
Physical and Chemical Mechanism in Molecular Radiation Biology
, edited by
W. E.
Glass
and
M. N.
Varma
(
Plenum
,
New York
,
1991
), and references therein.
6.
S.
Steenken
,
Chem. Rev. (Washington, D.C.)
89
,
503
(
1989
).
7.
X.
Li
,
Z.
Cai
, and
M. D.
Sevilla
,
J. Phys. Chem. A
106
,
1596
(
2002
).
8.
M.
Harańczyk
and
M.
Gutowski
,
J. Am. Chem. Soc.
127
,
699
(
2005
).
9.
R. A.
Bachorz
,
J.
Rak
, and
M.
Gutowski
,
Phys. Chem. Chem. Phys.
7
,
2116
(
2005
).
10.
R. N.
Compton
,
Y.
Yoshioka
, and
K. D.
Jordan
,
Theor. Chim. Acta
54
,
259
(
1980
).
11.
N. A.
Oyler
and
L.
Adamowicz
,
J. Phys. Chem.
97
,
11122
(
1993
).
12.
J. H.
Hendricks
,
S. A.
Lyapustina
,
H. L.
de Clercq
,
J. T.
Snodgrass
, and
K. H.
Bowen
, Jr.
,
J. Chem. Phys.
104
,
7788
(
1996
).
13.
C.
Desfrançois
,
H.
Abdoul-Carime
, and
J. P.
Schermann
,
J. Phys. Chem.
104
,
7792
(
1996
).
14.
K.
Aflatooni
,
G. A.
Gallup
, and
P. D.
Burrow
,
J. Phys. Chem. A
102
,
6205
(
1998
).
15.
M. A.
Huels
,
I.
Hahndorf
,
E.
Illenberger
, and
L.
Sanche
,
J. Chem. Phys.
108
,
1309
(
1998
).
16.
J.
Schiedt
,
R.
Weinkauf
,
D.
Neumark
, and
E. W.
Schlag
,
Chem. Phys.
239
,
511
(
1998
).
17.
C.
Desfrançois
and
J. P.
Schermann
, in
Atomic and Molecular Beams: The State of the Art 2000
, edited by
R.
Campargue
(
Springer
,
Berlin, 2001
), pp.
815
825
.
18.
C.
Desfrançois
,
V.
Periquet
,
Y.
Bouteiller
, and
J. P.
Schermann
,
J. Phys. Chem. A
102
,
1274
(
1998
).
19.
T.
Sommerfeld
,
J. Phys. Chem. A
108
,
9150
(
2004
).
20.
M. D.
Sevilla
,
B.
Besler
, and
A. O.
Colson
,
J. Phys. Chem.
99
,
1060
(
1995
).
21.
O.
Dolgounitcheva
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
,
Chem. Phys. Lett.
307
,
220
(
1999
).
22.
N.
Russo
,
M.
Toscano
, and
A.
Grand
,
J. Comput. Chem.
21
,
1243
(
2000
).
23.
S. D.
Wetmore
,
R. J.
Boyd
, and
L. A.
Eriksson
,
Chem. Phys. Lett.
322
,
129
(
2000
).
24.
S. S.
Wesolowski
,
M. L.
Leininger
,
P. N.
Pentchev
, and
H. F.
Schaefer
, III
,
J. Am. Chem. Soc.
123
,
4023
(
2001
).
25.
N. J.
Saettel
and
O.
Wiest
,
J. Am. Chem. Soc.
123
,
2693
(
2001
).
26.
D.
Svozil
,
T.
Frigato
,
Z.
Havlas
, and
P.
Jungwirth
,
Phys. Chem. Chem. Phys.
7
,
840
(
2005
).
27.
K.
Mazurkiewicz
,
R. A.
Bachorz
,
M.
Gutowski
, and
J.
Rak
,
J. Phys. Chem. B
110
,
24696
(
2006
).
28.
C.
Villani
and
W.
Klopper
,
J. Phys. B
38
,
2555
(
2005
).
29.
F. R.
Manby
,
J. Chem. Phys.
119
,
4607
(
2002
).
30.
TURBOMOLE V5.7,
Universität Karlsruhe (TH)
,
2004
(see http://www.turbomole.com).
31.
F.
Weigend
and
M.
Häser
,
Theor. Chem. Acc.
97
,
331
(
1997
).
32.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
33.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
34.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
,
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
35.
H.-J.
Werner
,
P. J.
Knowles
,
R.
Lindh
 et al., MOLPRO, Version 2006.1, a package of ab initio programs (see http://www.molpro.net).
36.
See EPAPS Document No. E-JCPSA6-126-311707 for total energies, geometrical parameters, and harmonic vibrational frequencies. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
37.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
,
Chem. Phys. Lett.
302
,
437
(
1999
).
38.
NWCHEM V4.7,
Pacific Northwest National Laboratory
,
2005
(see http://www.emsl.pnl.gov/docs/nwchem/nwchem.html).
39.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
40.
J. H.
Hendricks
,
S. A.
Lyapustina
,
H. L.
de Clercq
, and
K. H.
Bowen
, Jr.
,
J. Chem. Phys.
108
,
8
(
1998
).
41.
G.
Schaftenaar
and
J. H.
Noordik
,
J. Comput.-Aided Mol. Des.
14
,
123
(
2000
).
42.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).

Supplementary Material

You do not currently have access to this content.