The structures of formic and acetic acids deposited on a thin gold substrate held in vacuum at low temperatures and their related water-ice promoted chemistry have been investigated. The condensed water/guest films were taken to act as cirrus cloud “mimics.” Such laboratory representations provide a necessary prelude to understanding how low temperature surfaces can affect chemical composition changes in the upper atmosphere. The systems were characterized by reflection-absorption infrared spectroscopy and temperature-programed desorption spectrometry. The interaction behavior of the binary acid ices was compared to that observed when ternary mixtures of water, formic acid, and ammonia were deposited. Differences in the chemistry were observed depending on deposition method: layering or mixing. The more atmospherically relevant codeposition approach showed that at low temperatures, amorphous formic acid can be ionized to its monodentate form by water ice within the bulk rather than on the surface. In contrast, the introduction of ammonia leads to full bidentate ionization on the ice surface. The thermal desorption profiles of codeposited films of water, ammonia, and formic acid indicate that desorption occurs in three stages. The first is a slow release of ammonia between 120 and 160K, then the main water desorption event occurs with a maximum rate close to 180K, followed by a final release of ammonia and formic acid at about 230K originating from nonhydrous ammonium formate on the surface. The behavior of acetic acid is similar to formic acid but shows lesser propensity to ionize in bulk water ice.

1.
A.
Strahler
,
Introducing Physical Geography
, 2nd ed. (
Wiley
,
New York
,
2000
).
2.
M. A.
Zondlo
,
P. K.
Hudson
,
A. J.
Prenni
, and
M. A.
Tolbert
,
Annu. Rev. Phys. Chem.
51
,
473
(
2000
).
3.
B. J.
Finlayson-Pitts
and
J. N.
Pitts
, Jr.
,
Chemistry of the Upper and Lower Atmosphere
(
Academic
,
New York
,
2000
).
4.
A.
Chebbi
and
P.
Carlier
,
Atmos. Environ.
30
,
4233
(
1996
).
5.
M.
Legrand
,
S.
Preunkert
,
D.
Wagenbach
,
H.
Cachier
, and
H.
Puxbaum
,
J. Geophys. Res.
108
,
4788
(
2003
).
6.
M. O.
Andreae
,
R. W.
Talbot
,
H.
Berresheim
, and
K. M.
Beecher
,
J. Geophys. Res., [Atmos.]
95
,
16987
(
1990
).
7.
W. R.
Hartmann
,
M.
Santana
,
M.
Hermoso
,
M. O.
Andreae
, and
E.
Sanhueza
,
J. Atmos. Chem.
13
,
63
(
1991
).
8.
J. J.
Remedios
,
G.
Allen
,
A. M.
Waterfall
,
H.
Oelhaf
, and
A.
Kleinert
,
Atmospheric Chemistry and Physics Discussions
6
,
10021
10061
(
2006
).
9.
J. E.
Dibb
and
M.
Arsenault
,
Atmos. Environ.
36
,
2513
(
2002
).
10.
H. W.
Jacobi
,
R. C.
Bales
,
R. E.
Honrath
,
M. C.
Peterson
,
J. E.
Dibb
,
A. L.
Swanson
, and
M. R.
Albert
,
Atmos. Environ.
38
,
1687
(
2004
).
11.
P.
Ehrenfreund
,
L.
d’Hendecourt
,
S.
Charnley
, and
R.
Ruiterkamp
,
J. Geophys. Res., [Planets]
106
,
33291
(
2001
).
12.
D. E.
Woon
,
Int. J. Quantum Chem.
88
,
226
(
2002
).
13.
G. W.
vanLoon
and
S. J.
Duffy
,
Environmental Chemistry: A Global Perspective
(
Oxford University Press
,
New York
,
2003
).
14.
S.
Yamamoto
,
A.
Beniya
,
K.
Mukai
,
Y.
Yamashita
, and
J.
Yoshinobu
,
J. Phys. Chem. B
109
,
5816
(
2005
).
15.
L.
Schriver-Mazzuoli
,
A.
Schriver
, and
A.
Hallou
,
J. Mol. Struct.
554
,
289
(
2000
).
16.
F.
Bensebaa
and
T. H.
Ellis
,
Prog. Surf. Sci.
50
,
173
(
1995
).
17.
B.
Mate
,
A.
Medialdea
,
M. A.
Moreno
,
R.
Escribano
, and
V. J.
Herrero
,
J. Phys. Chem. B
107
,
11098
(
2003
).
18.
A. B.
Horn
and
J. R.
Sodeau
, in
Water in Confining Geometries
, edited by
V.
Buch
and
J. P.
Devlin
(
Springer
,
Verlag, Heidelberg
,
2003
), Chap. 13.
19.
M. A.
Zondlo
,
T. B.
Onasch
,
M. S.
Warshawsky
,
M. A.
Tolbert
,
G.
Mallick
,
P.
Arentz
, and
M. S.
Robinson
,
J. Phys. Chem. B
101
,
10887
(
1997
).
20.
P.
Jenniskens
,
S. F.
Banham
,
D. F.
Blake
, and
M. R. S.
McCoustra
,
J. Chem. Phys.
107
,
1232
(
1997
).
21.
M. A.
Henderson
,
Surf. Sci. Rep.
46
,
5
(
2002
).
22.
C.
Girardet
and
C.
Toubin
,
Surf. Sci. Rep.
44
,
163
(
2001
).
23.
A.
Allouche
and
S.
Bahr
,
J. Phys. Chem. B
110
,
8640
(
2006
).
24.
A.
Al-Halabi
,
R.
Bianco
, and
J. T.
Hynes
,
J. Phys. Chem. A
106
,
7639
(
2002
).
25.
M.
Ahmed
,
C. J.
Apps
,
C.
Hughes
,
N. E.
Watt
, and
J. C.
Whitehead
,
J. Phys. Chem. A
101
,
1250
(
1997
).
26.
A. B.
Horn
,
M. A.
Chesters
,
M. R. S.
McCoustra
, and
J. R.
Sodeau
,
J. Chem. Soc., Faraday Trans.
88
,
1077
(
1992
).
27.
L.
Delzeit
,
K.
Powell
,
N.
Uras
, and
J. P.
Devlin
,
J. Phys. Chem. B
101
,
2327
(
1997
).
28.
M.
Compoint
,
C.
Toubin
,
S.
Picaud
,
P. N. M.
Hoang
, and
C.
Girardet
,
Chem. Phys. Lett.
365
,
1
(
2002
).
29.
A.
Borodin
,
O.
Hofft
,
S.
Bahr
,
V.
Kempter
, and
A.
Allouche
,
Nucl. Instrum. Methods Phys. Res. B
232
,
79
(
2005
).
30.
Q.
Gao
and
K. T.
Leung
,
J. Phys. Chem. B
109
,
13263
(
2005
).
31.
T. G.
Koch
,
N. S.
Holmes
,
T. B.
Roddis
, and
J. R.
Sodeau
,
J. Phys. Chem.
100
,
11402
(
1996
).
32.
H. A.
Pearce
and
N.
Sheppard
,
Surf. Sci.
59
,
205
(
1976
).
33.
M. J.
Dignam
,
M.
Moskovit
, and
R. W.
Stobie
,
Trans. Faraday Soc.
67
,
3306
(
1971
).
34.
A. B.
Horn
,
S. F.
Banham
, and
M. R. S.
McCoustra
,
J. Chem. Soc., Faraday Trans.
91
,
4005
(
1995
).
35.
W. S.
Sim
,
P.
Gardner
, and
D. A.
King
,
J. Phys. Chem.
100
,
12509
(
1996
).
36.
R. C.
Millikan
and
K. S.
Pitzer
,
J. Am. Chem. Soc.
80
,
3515
(
1958
).
37.
J.
Cyriac
and
T.
Pradeep
,
Chem. Phys. Lett.
402
,
116
(
2005
).
38.
M.
Halupka
and
W.
Sander
,
Spectrochim. Acta, Part A
54
,
495
(
1998
).
39.
L.
George
and
W.
Sander
,
Spectrochim. Acta, Part A
60
,
3225
(
2004
).
40.
S.
Banham
, thesis,
University of East Anglia
,
1995
.
41.
D.
Forney
,
M. E.
Jacox
, and
W. E.
Thompson
,
J. Chem. Phys.
119
,
10814
(
2003
).
42.
M.
Bowker
,
S.
Haq
,
R.
Holroyd
,
P. M.
Parlett
,
S.
Poulston
, and
N.
Richardson
,
J. Chem. Soc., Faraday Trans.
92
,
4683
(
1996
).
43.
R.
Souda
,
J. Chem. Phys.
119
,
2774
(
2003
).
44.
M.
Endo
,
T.
Matsumoto
,
J.
Kubota
,
K.
Domen
, and
C.
Hirose
,
Surf. Sci.
441
,
L931
(
1999
).
45.
H.
Ishida
,
K.
Iwatsu
,
J.
Kubota
,
A.
Wada
,
K.
Domen
, and
C.
Hirose
,
Surf. Sci.
366
,
L724
(
1996
).
46.
C.
Xu
and
D. W.
Goodman
,
Catal. Today
28
,
297
(
1996
).
47.
A. F.
Carley
,
P. R.
Davies
,
E. M.
Moser
, and
M. W.
Roberts
,
Surf. Sci.
364
,
L563
(
1996
).
48.
I.
Nakamura
,
H.
Nakano
,
T.
Fujitani
,
T.
Uchijima
, and
J.
Nakamura
,
Surf. Sci.
404
,
92
(
1998
).
49.
C. M.
Truong
,
M. C.
Wu
, and
D. W.
Goodman
,
J. Chem. Phys.
97
,
9447
(
1992
).
50.
J.
Kubota
,
A.
Bandara
,
A.
Wada
,
K.
Domen
, and
C.
Hirose
,
Surf. Sci.
368
,
361
(
1996
).
51.
T.
Ohtani
,
J.
Kubota
,
A.
Wada
,
J. N.
Kondo
,
K.
Domen
, and
C.
Hirose
,
Surf. Sci.
368
,
270
(
1996
).
52.
S.
Bahr
,
A.
Borodin
,
O.
Höfft
,
V.
Kempter
, and
A.
Allouche
,
J. Chem. Phys.
122
,
234704
(
2005
).
53.
S.
Bahr
,
A.
Borodin
,
O.
Höfft
,
V.
Kempter
,
A.
Allouche
,
F.
Borget
, and
T.
Chiavassa
,
J. Phys. Chem. B
110
,
8649
(
2006
).
54.
N.
Watanabe
,
K.
Iwatsu
,
A.
Yamakata
,
T.
Ohtani
,
J.
Kubota
,
J. N.
Kondo
,
A.
Wada
,
K.
Domen
, and
C.
Hirose
,
Surf. Sci.
358
,
651
(
1996
).
55.
A. R.
Garcia
,
J. L.
da Silva
, and
L. M.
Ilharco
,
Surf. Sci.
415
,
183
(
1998
).
56.
Q. Y.
Gao
and
J. C.
Hemminger
,
J. Electron Spectrosc. Relat. Phenom.
54
,
667
(
1990
).
57.
G.
Hoogers
,
D. C.
Papageorgopoulos
,
Q.
Ge
, and
D. A.
King
,
Surf. Sci.
340
,
23
(
1995
).
58.
R. D.
Haley
,
M. S.
Tikhov
, and
R. M.
Lambert
,
Catal. Lett.
76
,
125
(
2001
).
You do not currently have access to this content.