Thermoviscoelastic linear-response functions are calculated from the master equation describing viscous liquid inherent dynamics. From the imaginary parts of the frequency-dependent isobaric specific heat, isothermal compressibility, and isobaric thermal expansion coefficient, we define a “linear dynamic Prigogine-Defay ratio” ΛTp(ω) with the property that if ΛTp(ω)=1 at one frequency, then ΛTp(ω) is unity at all frequencies. This happens if and only if there is a single-order-parameter description of the thermoviscoelastic linear responses via an order parameter (which may be nonexponential in time). Generalizations to other cases of thermodynamic control parameters than temperature and pressure are also presented.

1.
R. O.
Davies
and
G. O.
Jones
,
Proc. R. Soc. London, Ser. A
217
,
26
(
1952
).
2.
R. O.
Davies
and
G. O.
Jones
,
Adv. Phys.
2
,
370
(
1953
).
3.
I.
Prigogine
and
R.
Defay
,
Chemical Thermodynamics
(
Longman
,
London
,
1954
).
4.
M.
Goldstein
,
J. Chem. Phys.
39
,
3369
(
1963
).
5.
M.
Goldstein
, in
Modern Aspects of the Vitreous State
, edited by
J. D.
Mackenzie
(
Butterworths Scientific
,
London
,
1964
), Vol.
3
, p.
90
.
6.
C. A.
Angell
and
W.
Sichina
,
Ann. N.Y. Acad. Sci.
279
,
53
(
1976
).
7.
S.
Brawer
,
Relaxation in Viscous Liquids and Glasses
(
American Ceramic Society
,
Columbus, OH
,
1985
).
8.
S. V.
Nemilov
,
Thermodynamic and Kinetic Aspects of the Vitreous State
(
CRC
,
Boca Raton, FL
,
1995
).
9.
E.
Donth
,
The Glass Transition
(
Springer
,
Berlin
,
2001
).
10.
C. T.
Moynihan
,
P. B.
Macedo
,
C. J.
Montrose
,
C. J.
Montrose
,
P. K.
Gupta
,
M. A.
DeBolt
,
J. F.
Dill
,
B. E.
Dom
,
P. W.
Drake
,
A. J.
Easteal
,
P. B.
Elterman
,
R. P.
Moeller
,
H.
Sasabe
, and
J. A.
Wilder
,
Ann. N.Y. Acad. Sci.
279
,
15
(
1976
).
11.
H. -J.
Oels
and
G.
Rehage
,
Macromolecules
10
,
1036
(
1977
).
12.
P.
Zoller
,
J. Polym. Sci., Polym. Phys. Ed.
20
,
1453
(
1982
).
13.
H.
Wendt
and
R.
Richert
,
Phys. Rev. E
61
,
1722
(
2000
).
14.
R.
Böhmer
,
G.
Diezemann
,
G.
Hinze
, and
E.
Rössler
,
Prog. Nucl. Magn. Reson. Spectrosc.
39
,
191
(
2001
).
15.
R.
Richert
and
S.
Weinstein
,
Phys. Rev. Lett.
97
,
095703
(
2006
).
16.
R. -J.
Roe
,
J. Appl. Phys.
48
,
4085
(
1977
).
17.
I. M.
Hodge
,
J. Non-Cryst. Solids
169
,
211
(
1994
).
18.
C. T.
Moynihan
and
P. K.
Gupta
,
J. Non-Cryst. Solids
29
,
143
(
1978
).
19.
C. T.
Moynihan
and
A. V.
Lesikar
,
Ann. N.Y. Acad. Sci.
371
,
151
(
1981
).
20.
E. A.
DiMarzio
,
J. Appl. Phys.
45
,
4143
(
1974
).
21.
M.
Goldstein
,
J. Appl. Phys.
46
,
4153
(
1975
).
22.
A. V.
Lesikar
and
C. T.
Moynihan
,
J. Chem. Phys.
72
,
6422
(
1980
).
23.
Th. M.
Nieuwenhuizen
,
Phys. Rev. Lett.
79
,
1317
(
1997
).
24.
M. R. H.
Javaheri
and
R. V.
Chamberlin
,
J. Chem. Phys.
125
,
154503
(
2006
).
25.
J. H. R.
Clarke
,
J. Chem. Soc., Faraday Trans. 2
75
,
1371
(
1979
).
26.
E.
La Nave
,
S.
Mossa
, and
F.
Sciortino
,
Phys. Rev. Lett.
88
,
225701
(
2002
).
27.
M. S.
Shell
,
P. G.
Debenedetti
,
E. L.
Nave
, and
F.
Sciortino
,
J. Chem. Phys.
118
,
8821
(
2003
).
28.
S.
Mossa
and
F.
Sciortino
,
Phys. Rev. Lett.
92
,
045504
(
2004
).
29.
F.
Sciortino
,
J. Stat. Mech.: Theory Exp.
2005
,
P05015
.
30.
J. C.
Dyre
and
N. B.
Olsen
,
Phys. Rev. Lett.
91
,
155703
(
2003
).
31.
R.
Böhmer
,
G.
Diezemann
,
B.
Geil
,
G.
Hinze
,
A.
Nowaczyk
, and
M.
Winterlich
,
Phys. Rev. Lett.
97
,
135701
(
2006
).
32.
C. M.
Roland
,
S.
Hensel-Bielowka
,
M.
Paluch
, and
R.
Casalini
,
Rep. Prog. Phys.
68
,
1405
(
2005
).
33.
R. J.
Speedy
,
J. Phys. Chem. B
103
,
4060
(
1999
).
35.
N. B.
Olsen
,
T.
Christensen
, and
J. C.
Dyre
,
Phys. Rev. Lett.
86
,
1271
(
2001
).
36.
B.
Jakobsen
,
K.
Niss
, and
N. B.
Olsen
,
J. Chem. Phys.
123
,
234511
(
2005
).
37.
T.
Christensen
 et al, to be published.
38.
M.
Goldstein
,
J. Chem. Phys.
51
,
3728
(
1969
).
39.
R. G.
Palmer
,
Adv. Phys.
31
,
669
(
1982
).
40.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. A
28
,
2408
(
1983
).
41.
T. B.
Schrøder
,
S.
Sastry
,
J. C.
Dyre
, and
S. C.
Glotzer
,
J. Chem. Phys.
112
,
9834
(
2000
).
42.
The relation GPn=const leads to Gn+kBTlnPneq+kBT=const. Insert this into Eq. (4) to find Gn+kBTlnPneq=G, then isolate Pneq to get the desired result.
43.
N. G.
Van Kampen
,
Stochastical Processes in Physics and Chemistry
(
North Holland
,
Amsterdam
,
1981
).
44.
We have lnPmeqT=[1kBT]((GmG)T(GmG)T)=(1kBT)(SPmS+kB) and lnPmeq(p)=[1kBT0][(GmG)(p)]=(1kBT0)(VPmV).
45.
L. E.
Reichl
,
A Modern Course in Statistical Physics
, 2nd ed. (
Wiley
,
New York
,
1998
).
46.
If the eigenvalues of Y are denoted by λk with corresponding eigenvectors ek, there are N1 negative eigenvalues and one zero eigenvalue.43 Equation (23) implies that for any vector x we have x|A(ω)|x=(1kBT0)λk<0Rx|ekek|Rxλk(λkiω) (where the sum is restricted to the N1 negative eigenstates). Letting ω0 we find that x|A(0)|x0, showing that A(0) is positive semidefinite. For the imaginary part, we find that x|A(ω)|x=(1kBT0)λk<0Rx|ekek|Rxλkω(λk2+ω2)0 whenever ω>0; thus A(ω) is negative semidefinite. In both cases, equality applies if and only if the vector Rx lies in the one-dimensional eigenspace of Y corresponding to the zero eigenvalue. Thus equality applies if and only if (Rx)n(Pn0)12, or x(1,,1).
47.
P. K.
Gupta
and
C. T.
Moynihan
,
J. Chem. Phys.
65
,
4136
(
1976
).
48.
J.
Meixner
and
H. G.
Reik
, in
Principen der Thermodynamik und Statistik
, edited by
S
.
Flügge
,
Handbuch der Physik
, Vol.
3
(
Springer
,
Berlin
,
1959
), p.
413
.
49.
J. I.
Berg
and
A. R.
Cooper
,
J. Chem. Phys.
68
,
4481
(
1978
).
50.
R. M.
Christensen
,
Theory of Viscoelasticity
, 2nd ed. (
Academic
,
New York
,
1982
).
51.
G. F.
Oster
,
A. S.
Perelson
, and
A.
Katchalsky
,
Q. Rev. Biophys.
6
,
1
(
1973
).
52.
D. C.
Mikulecky
,
Applications of Network Thermodynamics to Problems in Biomedical Engineering
(
New York University
,
New York
,
1993
).
53.
J.
Bataille
and
J.
Kestin
,
J. Non-Equil. Thermodyn.
4
,
229
(
1979
).
You do not currently have access to this content.