Metal shielding constants and chemical shifts are determined for nine transition metal complexes using an uncoupled formalism with orbitals and eigenvalues determined using the Yang-Wu implementation [W. Yang and Q. Wu, Phys. Rev. Lett.89, 143002 (2002)] of the optimized effective potential approach in density functional theory. Preliminary calculations using generalized gradient approximation functionals quantify the influence of the variables in the optimized effective potential implementation. In particular, a flexible potential expansion is necessary for a precise calculation of these quantities. Hybrid functionals are then considered. Expanding the potential in the primary orbital basis yields chemical shifts that are a notable improvement over conventional hybrid values, and which are a marginal improvement over those obtained using a high-quality generalized gradient approximation. Similar shifts are obtained using a more flexible potential expansion, although care is required to avoid unphysical structure in the exchange-correlation potential.

1.
M.
Bühl
,
M.
Kaupp
,
O. L.
Malkina
, and
V. G.
Malkin
,
J. Comput. Chem.
20
,
91
(
1999
).
2.
C.
van Wüllen
,
Calculation of NMR and EPR Parameters
(
Wiley-VCH
,
New York
,
2004
), p.
85
.
3.
G.
Vignale
,
M.
Rasolt
, and
D. J. W.
Geldart
,
Phys. Rev. B
37
,
2502
(
1988
).
4.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
5.
P. J.
Wilson
and
D. J.
Tozer
,
Chem. Phys. Lett.
337
,
341
(
2001
).
6.
Q.
Zhao
,
R. C.
Morrison
, and
R. G.
Parr
,
Phys. Rev. A
50
,
2138
(
1994
).
7.
A. J.
Cohen
,
Q.
Wu
, and
W.
Yang
,
Chem. Phys. Lett.
399
,
84
(
2004
).
8.
R. T.
Sharp
and
G. K.
Horton
,
Phys. Rev.
90
,
317
(
1953
).
9.
J. D.
Talman
and
W. F.
Shadwick
,
Phys. Rev. A
14
,
36
(
1976
).
10.
M. J.
Allen
,
T. W.
Keal
, and
D. J.
Tozer
,
Chem. Phys. Lett.
380
,
70
(
2003
).
11.
P. J.
Wilson
and
D. J.
Tozer
,
J. Mol. Struct.
602–603
,
191
(
2002
).
12.
O. B.
Lutnæs
,
A. M.
Teale
,
T.
Helgaker
, and
D. J.
Tozer
,
J. Chem. Theory Comput.
2
,
827
(
2006
).
13.
A. M.
Teale
and
D. J.
Tozer
,
Chem. Phys. Lett.
383
,
109
(
2004
).
14.
W.
Hieringer
,
F.
Della Sala
, and
A.
Görling
,
Chem. Phys. Lett.
383
,
115
(
2004
).
15.
A. V.
Arbuznikov
and
M.
Kaupp
,
Chem. Phys. Lett.
386
,
8
(
2004
).
16.
A. V.
Arbuznikov
and
M.
Kaupp
,
Chem. Phys. Lett.
391
,
16
(
2004
).
17.
A. V.
Arbuznikov
and
M.
Kaupp
,
Int. J. Quantum Chem.
104
,
261
(
2005
).
18.
S.
Patchkovskii
,
J.
Autschbach
, and
T.
Ziegler
,
J. Chem. Phys.
115
,
26
(
2001
).
19.
F.
Della Sala
and
A.
Görling
,
J. Chem. Phys.
115
,
5718
(
2001
).
20.
J. B.
Krieger
,
Y.
Li
, and
G. J.
Iafrate
,
Phys. Rev. A
46
,
5453
(
1992
).
21.
M.
Bühl
,
Magn. Reson. Chem.
44
,
661
(
2006
).
22.
M.
Bühl
and
F. T.
Mauschick
,
Magn. Reson. Chem.
42
,
737
(
2004
).
23.
P. J.
Wilson
,
R. D.
Amos
, and
N. C.
Handy
,
Phys. Chem. Chem. Phys.
2
,
187
(
2000
).
24.
S.
Grigoleit
and
M.
Bühl
,
Chem.-Eur. J.
10
,
5541
(
2004
).
25.
M.
Kaupp
,
O. L.
Malkina
, and
V. G.
Malkin
,
J. Chem. Phys.
106
,
9201
(
1997
).
26.
J.
Li
,
G.
Schreckenbach
, and
T.
Ziegler
,
J. Am. Chem. Soc.
117
,
486
(
1995
).
27.
28.
R.
Bouten
,
E. J.
Baerends
,
E.
van Lenthe
,
L.
Visscher
,
G.
Schreckenbach
, and
T.
Ziegler
,
J. Phys. Chem. A
104
,
5600
(
2000
).
29.
M.
Bühl
,
Theor. Chem. Acc.
107
,
336
(
2002
).
30.
M. A.
Watson
,
N. C.
Handy
,
A. J.
Cohen
, and
T.
Helgaker
,
J. Chem. Phys.
120
,
7252
(
2004
).
31.
A. J. H.
Wachters
,
J. Chem. Phys.
52
,
1033
(
1970
).
32.
DALTON, a molecular electronic structure program, Release 2.0,
2005
(see http://www.kjemi.uio.no/software/dalton/dalton.html).
33.
R. D.
Amos
,
I. L.
Alberts
,
J. S.
Andrews
 et al, CADPAC6.5, the Cambridge analytic derivatives package,
1998
.
34.
W.
Yang
and
Q.
Wu
,
Phys. Rev. Lett.
89
,
143002
(
2002
).
35.
Q.
Wu
and
W.
Yang
,
J. Theor. Comput. Chem.
2
,
627
(
2003
).
36.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes
(
Cambridge University Press
,
Cambridge
,
1986
), p.
54
.
37.
E.
Fermi
and
E.
Amaldi
,
Acad. Ital. Rome
6
,
117
(
1934
).
38.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
39.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
40.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
41.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
42.
P.
Mori-Sánchez
,
Q.
Wu
, and
W.
Yang
,
J. Chem. Phys.
119
,
11001
(
2003
).
43.
S.
Hirata
,
S.
Ivanov
,
I.
Grabowski
,
R. J.
Bartlett
,
K.
Burke
, and
J. D.
Talman
,
J. Chem. Phys.
,
115
,
1635
(
2001
).
44.
A.
Görling
,
Phys. Rev. Lett.
83
,
5459
(
1999
).
45.
C. J.
Umrigar
and
X.
Gonze
,
Phys. Rev. A
50
,
3827
(
1994
).
46.
Exponents of s, p, and d functions are λns, λnp, and λnd, where λ=2 is a universal base and ns, np, and nd are integers defined as follows. (a) Transition metals: 3ns+9, 3np+6, and 3nd+3; (b) Cl: 3ns+7, 3np+4, and 1nd+1; (c) C, O, F: 3ns+5, 2np+3, and 1nd+1; and (d) H: 2ns+3, 1np+1. Higher exponents were not used as they can lead to unphysical oscillations. For example, in
Phys. Chem. Chem. Phys.
7,
2991
(
2005
), we performed OEP calculations on simple molecules. Close examination of the potentials reveals oscillatory behavior, which can be removed by eliminating high exponent functions from the potential expansion. The electron densities, orbital probability densities, HOMO-LUMO gaps, and NMR shielding constants presented in this earlier study are barely affected by the removal of this structure.
47.
F. A.
Hamprecht
,
A. J.
Cohen
,
D. J.
Tozer
, and
N. C.
Handy
,
J. Chem. Phys.
109
,
6264
(
1998
).
48.
V. N.
Staroverov
,
G. E.
Scuseria
, and
E. R.
Davidson
,
J. Chem. Phys.
124
,
141103
(
2006
).
49.
V. N.
Staroverov
,
G. E.
Scuseria
, and
E. R.
Davidson
,
J. Chem. Phys.
125
,
081104
(
2006
).
50.
M.
Ernzerhof
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
5029
(
1999
).
51.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
You do not currently have access to this content.