Photodissociation of water clusters doped with HX(X=Br,Cl), molecules has been studied in a molecular beam experiment. The HX(H2O)n clusters are dissociated with 193nm laser pulses, and the H fragments are ionized at 243.07nm and their time-of-flight distributions are measured. Experiments with deuterated species DBr(H2O)n and HBr(D2O)n suggest that the photodissociation signal originates from the presence of the HX molecule on the water cluster, but does not come directly from a photolysis of the HX molecule. The H fragment is proposed to originate from the hydronium molecule H3O. Possible mechanisms of the H3O production are discussed. Experimental evidence suggests that acidic dissociation takes place in the cluster, but the H3O+ ion remains rather immobile.

1.
C.
Mundy
and
I.
Kuo
,
Chem. Rev. (Washington, D.C.)
106
,
1282
(
2006
).
2.
T.
Huthwelker
,
M.
Ammann
, and
T.
Peter
,
Chem. Rev. (Washington, D.C.)
106
,
1375
(
2006
).
3.
M. J.
Packer
and
D. C.
Clary
,
J. Phys. Chem.
99
,
14323
(
1995
).
4.
C.
Lee
,
C.
Sosa
,
M.
Planas
, and
J. J.
Novoa
,
J. Chem. Phys.
104
,
7081
(
1996
).
5.
S.
Re
,
Y.
Osamura
,
Y.
Suzuki
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
109
,
973
(
1998
).
6.
B.
Gertner
,
G.
Peslherbe
, and
J.
Hynes
,
Isr. J. Chem.
39
,
273
(
1999
).
7.
A.
Milet
,
C.
Struniewicz
,
R.
Moszynski
, and
P. E. S.
Wormer
,
J. Chem. Phys.
115
,
349
(
2001
).
8.
C.
Amirand
and
D.
Maillard
,
J. Mol. Struct.
176
,
181
(
1988
).
9.
S.
Hurley
,
T.
Dermota
,
D.
Hydutsky
, and
A.
Castleman
,
J. Chem. Phys.
118
,
9272
(
2003
).
10.
M.
Weimann
,
M.
Fárník
, and
M. A.
Suhm
,
Phys. Chem. Chem. Phys.
4
,
3933
(
2002
).
11.
M.
Fárník
,
M.
Weimann
, and
M. A.
Suhm
,
J. Chem. Phys.
118
,
10120
(
2003
).
12.
K.
Bolton
and
J.
Pettersson
,
J. Am. Chem. Soc.
123
,
7360
(
2001
).
13.
K.
Bolton
,
J. Mol. Struct.: THEOCHEM
632
,
145
(
2003
).
14.
A.
Al-Halabi
,
R.
Bianco
, and
J.
Hynes
,
J. Phys. Chem. A
106
,
7639
(
2002
).
15.
L.
Wang
and
D. C.
Clary
,
J. Chem. Phys.
104
,
5663
(
1996
).
16.
B. J.
Gertner
and
J. T.
Hynes
,
Faraday Discuss.
110
,
301
(
1998
).
17.
M.
Svanberg
,
J. B. C.
Pettersson
, and
K.
Bolton
,
J. Phys. Chem. A
104
,
5787
(
2000
).
18.
V.
Buch
,
J.
Sadlej
,
N.
Aytemiz-Uras
, and
J. P.
Devlin
,
J. Phys. Chem. A
106
,
9374
(
2002
).
19.
J.
Graham
and
J.
Roberts
,
J. Phys. Chem.
98
,
5974
(
1994
).
20.
H.
Kang
,
T. H.
Shin
,
S. C.
Park
,
I. K.
Kim
, and
S. J.
Han
,
J. Am. Chem. Soc.
122
,
9842
(
2000
).
21.
S.
Park
and
H.
Kang
,
J. Phys. Chem. B
109
,
5124
(
2005
).
22.
J.
Devlin
,
N.
Uras
,
J.
Sadlej
, and
V.
Buch
,
Nature (London)
417
,
269
(
2002
).
23.
F.
Bournel
,
C.
Mangeney
,
M.
Tronc
,
C.
Laffon
, and
P.
Parent
,
Phys. Rev. B
65
,
201404
(
2002
).
24.
F.
Bournel
,
C.
Mangeney
,
M.
Tronc
,
C.
Laffon
, and
P.
Parent
,
Surf. Sci.
528
,
224
(
2003
).
25.
P.
Parent
and
C.
Laffon
,
J. Phys. Chem. B
109
,
1547
(
2005
).
26.
M.
Kondo
,
H.
Kawanowa
,
Y.
Gotoh
, and
R.
Souda
,
J. Chem. Phys.
121
,
8589
(
2004
).
27.
A. L.
Sobolewski
and
W.
Domcke
,
J. Phys. Chem. A
107
,
1557
(
2003
).
28.
U.
Buck
,
J. Phys. Chem. A
106
,
10049
(
2002
).
29.
R.
Baumfalk
,
U.
Buck
,
C.
Frischkorn
,
S. R.
Gandhi
, and
C.
Lauenstein
,
Ber. Bunsenges. Phys. Chem.
101
,
606
(
1997
).
30.
C.
Bobbert
,
S.
Schütte
,
C.
Steinbach
, and
U.
Buck
,
Eur. Phys. J. D
19
,
183
(
2002
).
31.
S. W.
Downey
and
R. S.
Hozack
,
Opt. Lett.
14
,
15
(
1989
).
32.

The background signal corresponds to the photolysis of rest gas molecules, namely, pump fluid hydrocarbons, and the photolysis of HBr molecules diffused from the pickup cell.

33.
R.
Baumfalk
,
U.
Buck
,
C.
Frischkorn
,
N. H.
Nahler
, and
L.
Hüwel
,
J. Chem. Phys.
111
,
2595
(
1999
).
34.
A. L.
Sobolewski
and
W.
Domcke
,
J. Chem. Phys.
122
,
184320
(
2005
).
35.
A. L.
Sobolewski
and
W.
Domcke
,
Phys. Chem. Chem. Phys.
4
,
4
(
2002
).
36.

The absolute signal intensities depend on many factors, e.g., laser power and its focusing into the TOF chamber, the pickup cell pressure, etc. Since the spectra are quite sensitive to some of these parameters, the relative intensities should be regarded as approximate. However, a ratio of 103 would be expected between the H-fragment signals from HBr(H2O) and HBr(D2O)n, if the H atom were “diluted” by charge transfer process in the (D2O)n cluster. In fact, the measured ratio is orders of magnitude smaller.

37.
J.
Brudermann
,
U.
Buck
, and
V.
Buch
,
J. Phys. Chem.
106
,
453
(
2002
).
38.

It should be noted that various structures of proton transfer states ranging from hydronium to a strongly stretched molecular halide can occur on the ice particle surface due to a range of microsolvation environments. The hydrogen in the intact HX molecule and in the hydronium ion represent two extreme cases. A high asymmetry in the hydronium structure would lead to a deposition of the excitation energy into a dissociative mode for the bridging hydrogen between halogen and oxygen atoms. This would lead to fast departing hydrogens and less isotopic mixing which are both not observed in the experiment. Therefore the structures close to hydronium are expected to dominate.

39.
S.-C.
Park
,
K.-H.
Jung
, and
H.
Kang
,
J. Chem. Phys.
121
,
2765
(
2004
).
You do not currently have access to this content.