Using molecular-dynamics simulations, we study the crystallization of supercooled liquids of charge-stabilized colloidal suspensions, modeled by the Yukawa (screened-Coulomb) potential. By modifying the value of the screening parameter λ, we are able to invert the stability of the body-centered cubic (bcc) and face-centered cubic (fcc) polymorphs and study the crystal nucleation and growth in the domain of stability of each polymorph. We show that the crystallization mechanism strongly depends on the value of λ. When bcc is the stable polymorph (λ=3), the crystallization mechanism is straightforward. Both kinetics and thermodynamics favor the formation of the bcc particles and polymorph selection takes place early during the nucleation step. When fcc is the stable polymorph (λ=10), the molecular mechanism is much more complex. First, kinetics favor the formation of bcc particles during the nucleation step. The growth of the post-critical nucleus proceeds through the successive cross-nucleation of the stable fcc polymorph on the metastable hcp polymorph as well as of the hcp polymorph on the fcc polymorph. As a result, polymorph selection occurs much later, i.e., during the growth step, than for λ=3. We then extend our findings established in the case of homogeneous crystal nucleation to a situation of practical interest, i.e., when a seed of the stable polymorph is used. We demonstrate that the growth from the (111) face of a perfect fcc crystal into the melt proceeds through the same mechanisms.

1.
J.
Bernstein
,
Polymorphism in Molecular Crystals
(
Oxford University Press
,
Oxford
,
2002
).
2.
J.
Bernstein
,
R. J.
Davey
, and
J. O.
Henck
,
Angew. Chem. Int. Ed.
38
,
3440
(
1999
).
3.
P.
Fryer
and
K.
Pinschower
,
MRS Bull.
25
,
25
(
2000
).
4.
R. S.
Hoy
and
M. O.
Robbins
,
Phys. Rev. E
69
,
056103
(
2004
).
5.
S.
Hamaguchi
,
R. T.
Farouki
, and
D. H. E.
Dubin
,
Phys. Rev. E
56
,
4671
(
1997
).
6.
S.
Auer
and
D.
Frenkel
,
J. Phys.: Condens. Matter
3
,
873
(
2003
).
7.
M. O.
Robbins
,
K.
Kremer
, and
G. S.
Grest
,
J. Chem. Phys.
88
,
3286
(
1988
).
8.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
Phys. Rev. Lett.
75
,
2714
(
1995
).
9.
F.
Trudu
,
D.
Donadio
, and
M.
Parrinello
,
Phys. Rev. Lett.
97
,
105701
(
2006
).
10.
G. M.
Torrie
and
J. P.
Valleau
,
Chem. Phys. Lett.
28
,
578
(
1974
).
11.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
12.
C.
Desgranges
and
J.
Delhommelle
,
J. Am. Chem. Soc.
128
,
10368
(
2006
a).
13.
C.
Desgranges
and
J.
Delhommelle
,
J. Am. Chem. Soc.
128
,
15104
(
2006
b).
14.
P.
Rein ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
J. Chem. Phys.
104
,
9932
(
1996
).
15.
S.
Alexander
and
J. P.
McTague
,
Phys. Rev. Lett.
41
,
702
(
1978
).
16.
L.
Yu
,
J. Am. Chem. Soc.
125
,
6380
(
2003
).
17.
S.
Chen
,
H.
Xi
, and
L.
Yu
,
J. Am. Chem. Soc.
127
,
17439
(
2005
).
18.
M. S.
Gulam Razul
,
J. G.
Hendry
, and
P. G.
Kusalik
,
J. Chem. Phys.
123
,
204722
(
2005
).
19.
E.
Burke
,
J. Q.
Broughton
, and
G. H.
Gilmer
,
J. Chem. Phys.
89
,
1030
(
1988
).
20.
A.
Cacciuto
,
S.
Auer
, and
D.
Frenkel
,
Nature
428
,
404
(
2004
).
21.
S.
Prestipino
,
F.
Saija
, and
P. V.
Giaquinta
,
J. Chem. Phys.
123
,
144110
(
2005
).
You do not currently have access to this content.