The fluctuation theorem describes the distribution of work done on small systems which have been pushed out of equilibrium in response to an external field. The theorem has recently been a subject of much interest for describing single-molecule experiments and simulations. In this communication, it is shown how the fluctuation theorem can be extended to describe fluctuations not only in the work done on a system, but also in a reaction coordinate. The extension explored in this work allows for a generalized derivation of Hummer and Szabo’s expression (G. Hummer and A. Szabo, Proc. Natl. Acad. Sci.98, 3658 (2001)) for reconstructing the potential of mean force from nonequilibrium trajectories. The derivation demonstrates how implementation of this expression can be more easily facilitated. Atomistic simulations of a biomolecular system are presented which support these results.

1.
D. J.
Evans
,
E. G. D.
Cohen
, and
G. P.
Morriss
,
Phys. Rev. Lett.
71
,
2401
(
1993
).
2.
D. J.
Evans
and
D. J.
Searles
,
Phys. Rev. E
50
,
1645
(
1994
).
3.
D. J.
Evans
and
D. J.
Searles
,
Adv. Phys.
51
,
1529
(
2002
).
4.
G. E.
Crooks
,
Phys. Rev. E
60
,
2721
(
1999
).
5.
G. E.
Crooks
,
Phys. Rev. E
61
,
2361
(
2000
).
6.
E.
Mittag
and
D. J.
Evans
,
Phys. Rev. E
67
,
026113
(
2003
).
8.
W.
Min
,
L.
Jiang
,
J.
Yu
,
S. C.
Kou
,
H.
Qian
, and
X. S.
Xie
,
Nano Lett.
5
,
2373
(
2005
).
9.
D. J.
Evans
,
D. J.
Searles
, and
E.
Mittag
,
Phys. Rev. E
63
,
051105
(
2001
).
10.
C.
Bustamante
,
J.
Liphardt
, and
F.
Ritort
,
Phys. Today
58
,
43
(
2005
).
11.
D. M.
Carberry
,
J. C.
Reid
,
G. M.
Wang
,
E. M.
Sevick
,
D. J.
Searles
, and
D. J.
Evans
,
Phys. Rev. Lett.
92
,
140601
(
2004
).
12.
D.
Collin
,
F.
Ritort
,
C.
Jarzynski
,
S. B.
Smith
,
I.
Tinoco
, Jr.
, and
C.
Bustamante
,
Nature (London)
437
,
231
(
2005
).
13.
J. C.
Reid
,
D. M.
Carberry
,
G. M.
Wang
,
E. M.
Sevick
, and
D. J.
Evans
,
Phys. Rev. E
70
,
016111
(
2004
).
14.
F.
Ritort
, in
Poincaré Seminar 2003: Bose-Einstein Condensation–Entropy
, edited by
J.
Dalibard
,
B.
Duplantier
, and
V.
Rivasseau
(
Springer Science & Business Media
,
Germany
,
2003
), p.
15.
D. J.
Evans
and
G. P.
Morriss
,
Statistical Mechanics of Nonequilibrium Liquids
(
Academic
,
London
,
1990
).
16.
J. C.
Reid
,
E. M.
Sevick
, and
D. J.
Evans
,
Europhys. Lett.
72
,
726
(
2005
).
17.
D. J.
Searles
and
D. J.
Evans
,
J. Chem. Phys.
113
,
3505
(
2000
).
18.
S.
Paramore
,
G. S.
Ayton
,
D. T.
Mirijanian
, and
G. A.
Voth
,
Biophys. J.
90
,
92
(
2006
).
19.
20.
G.
Hummer
and
A.
Szabo
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
3658
(
2001
).
21.
G.
Hummer
and
A.
Szabo
,
Acc. Chem. Res.
38
,
504
(
2005
).
22.
S.
Paramore
,
G. S.
Ayton
, and
G. A.
Voth
,
Biophys. J.
90
,
101
(
2006
).
23.
C.
Jarzynski
,
Phys. Rev. Lett.
78
,
2690
(
1997
).
24.
B.
Roux
,
Comput. Phys. Commun.
91
,
275
(
1995
).
25.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford, U.K.
,
2001
).
You do not currently have access to this content.