The ortho-benzyne diradical, o-C6H4 has been produced with a supersonic nozzle and its subsequent thermal decomposition has been studied. As the temperature of the nozzle is increased, the benzyne molecule fragments: o-C6H4+Δ products. The thermal dissociation products were identified by three experimental methods: (i) time-of-flight photoionization mass spectrometry, (ii) matrix-isolation Fourier transform infrared absorption spectroscopy, and (iii) chemical ionization mass spectrometry. At the threshold dissociation temperature, o-benzyne cleanly decomposes into acetylene and diacetylene via an apparent retro-Diels-Alder process: o-C6H4+ΔHCCH+HCCCCH. The experimental ΔrxnH298(o-C6H4HCCH+HCCCCH) is found to be 57±3kcalmol1. Further experiments with the substituted benzyne, 3,6-(CH3)2-o-C6H2, are consistent with a retro-Diels-Alder fragmentation. But at higher nozzle temperatures, the cracking pattern becomes more complicated. To interpret these experiments, the retro-Diels-Alder fragmentation of o-benzyne has been investigated by rigorous ab initio electronic structure computations. These calculations used basis sets as large as [C(7s6p5d4f3g2h1i)H(6s5p4d3f2g1h)] (cc-pV6Z) and electron correlation treatments as extensive as full coupled cluster through triple excitations (CCSDT), in cases with a perturbative term for connected quadruples [CCSDT(Q)]. Focal point extrapolations of the computational data yield a 0K barrier for the concerted, C2v-symmetric decomposition of o-benzyne, Eb(o-C6H4HCCH+HCCCCH)=88.0±0.5kcalmol1. A barrier of this magnitude is consistent with the experimental results. A careful assessment of the thermochemistry for the high temperature fragmentation of benzene is presented: C6H6H+[C6H5]H+[o-C6H4]HCCH+HCCCCH. Benzyne may be an important intermediate in the thermal decomposition of many alkylbenzenes (arenes). High engine temperatures above 1500K may crack these alkylbenzenes to a mixture of alkyl radicals and phenyl radicals. The phenyl radicals will then dissociate first to benzyne and then to acetylene and diacetylene.

1.
S. H.
Bauer
and
C. F.
Aten
,
J. Chem. Phys.
39
,
1253
(
1963
).
2.
J. H.
Kiefer
,
L. J.
Mizerka
,
M. R.
Patel
, and
H. C.
Wei
,
J. Phys. Chem.
89
,
2013
(
1985
).
3.
P. R.
Westmoreland
,
A. M.
Dean
,
J. B.
Howard
, and
J. P.
Longwell
,
J. Phys. Chem.
93
,
8171
(
1989
).
4.
W. Q.
Deng
,
K. L.
Han
,
J. P.
Zhan
, and
G. Z.
He
,
Chem. Phys. Lett.
288
,
33
(
1998
).
5.
L. V.
Moskaleva
,
L. K.
Madden
, and
M. C.
Lin
,
Phys. Chem. Chem. Phys.
1
,
3967
(
1999
).
6.
H.
Wang
,
A.
Laskin
,
N. W.
Moriarty
, and
M.
Frenklach
,
Proc. Combust. Inst.
28
,
1545
(
2000
).
7.
R. R.
Jones
and
R. G.
Bergman
,
J. Am. Chem. Soc.
94
,
660
(
1972
).
8.
R. G.
Bergman
,
Acc. Chem. Res.
6
,
25
(
1973
).
9.
J. B.
Pedley
,
R. D.
Naylor
, and
S. P.
Kirby
,
Thermochemistry of Organic Compounds
, 2nd ed. (
Chapman and Hall
,
New York
,
1986
).
10.
J. H.
Kiefer
,
S. S.
Sidhu
,
R. D.
Kern
,
K.
Xie
,
H.
Chen
, and
L. B.
Harding
,
Combust. Sci. Technol.
82
,
101
(
1992
).
11.
S. E.
Stein
and
A.
Fahr
,
J. Phys. Chem.
89
,
3714
(
1985
).
12.
W. R.
Roth
,
O.
Adamczak
,
R.
Breuckmann
,
H. W.
Lennartz
, and
R.
Boese
,
Chem. Ber.
124
,
2499
(
1991
).
13.
J.
Berkowitz
,
G. B.
Ellison
, and
D.
Gutman
,
J. Phys. Chem.
98
,
2744
(
1994
).
14.
S. J.
Blanksby
and
G. B.
Ellison
,
Acc. Chem. Res.
36
,
255
(
2003
).
15.
P. H.
Kasai
,
E.
Hedaya
, and
P. H.
Kasai
,
J. Am. Chem. Soc.
91
,
4364
(
1969
).
16.
J. G.
Radziszewski
,
M. R.
Nimlos
,
P. R.
Winter
, and
G. B.
Ellison
,
J. Am. Chem. Soc.
118
,
7400
(
1996
).
17.
A. V.
Friderichsen
,
J. G.
Radziszewski
,
M. R.
Nimlos
,
P. R.
Winter
,
D. C.
Dayton
,
D. E.
David
, and
G. B.
Ellison
,
J. Am. Chem. Soc.
123
,
1977
(
2001
).
18.
R. J.
McMahon
,
M. C.
McCarthy
,
C. A.
Gottlieb
,
J. B.
Dudek
,
J. F.
Stanton
, and
P.
Thaddeus
,
Astrophys. J.
590
,
L61
(
2003
).
19.
V.
Butcher
,
M. L.
Costa
,
J. M.
Dyke
,
A. R.
Ellis
, and
A.
Morris
,
Chem. Phys.
115
,
261
(
1987
).
20.
X.
Zhang
, Ph.D. thesis,
Harvard University
,
1995
.
21.
R. F.
Gunion
,
M. K.
Gilles
,
M. L.
Polak
, and
W. C.
Lineberger
,
Int. J. Mass. Spectrom.
117
,
601
(
1992
).
22.
G. E.
Davico
,
V. M.
Bierbaum
,
C. H.
DePuy
,
G. B.
Ellison
, and
R. R.
Squires
,
J. Am. Chem. Soc.
117
,
2590
(
1995
).
23.
K. M.
Ervin
and
V. F.
DeTuri
,
J. Phys. Chem. A
106
,
9947
(
2002
).
24.
R. S.
Berry
,
G. N.
Spokes
, and
R. M.
Stiles
,
J. Am. Chem. Soc.
82
,
5240
(
1960
).
25.
R. S.
Berry
,
G. N.
Spokes
, and
R. M.
Stiles
,
J. Am. Chem. Soc.
84
,
3570
(
1962
).
26.
R. S.
Berry
,
J.
Clardy
, and
M. E.
Schafer
,
J. Am. Chem. Soc.
86
,
2738
(
1964
).
27.
R. S.
Berry
,
J.
Clardy
, and
M. E.
Schafer
,
Tetrahedron Lett.
15
,
1003
(
1965
).
28.
R. S.
Berry
,
J.
Clardy
, and
M. E.
Schafer
,
Tetrahedron Lett.
15
,
1011
(
1965
).
29.
R. D.
Brown
,
P. D.
Godfrey
, and
M.
Rodler
,
J. Am. Chem. Soc.
108
,
1296
(
1986
).
30.
S. G.
Kukolich
,
C.
Tanjaroom
,
M. C.
McCarthy
, and
P.
Thaddeus
,
J. Chem. Phys.
119
,
4353
(
2003
).
31.
S. G.
Kukolich
,
M. C.
McCarthy
, and
P.
Thaddeus
,
J. Phys. Chem. A
108
,
2645
(
2004
).
32.
X.
Zhang
and
P.
Chen
,
J. Am. Chem. Soc.
114
,
3147
(
1992
).
33.
W. A.
Goddard
 III
,
T. H.
Dunning
, Jr.
,
W. J.
Hunt
, and
P. J.
Hay
,
Acc. Chem. Res.
6
,
368
(
1973
).
34.
D. G.
Leopold
,
A. E. S.
Miller
, and
W. C.
Lineberger
,
J. Am. Chem. Soc.
108
,
1379
(
1986
).
35.
J. G.
Radziszewski
,
B. A.
Hess
, and
R.
Zahradnik
,
J. Am. Chem. Soc.
114
,
52
(
1992
).
36.
Y. L.
Guo
and
J. J.
Grabowski
,
J. Am. Chem. Soc.
113
,
5923
(
1991
).
37.
J. M.
Riveros
,
S.
Ingemann
, and
N. M. M.
Nibbering
,
J. Am. Chem. Soc.
113
,
1053
(
1991
).
38.
P. G.
Wenthold
and
R. R.
Squires
,
J. Am. Chem. Soc.
116
,
6401
(
1994
).
39.
P. G.
Wenthold
,
J.
Hu
, and
R. R.
Squires
,
J. Am. Chem. Soc.
116
,
6961
(
1994
).
40.
X.
Zhang
,
A. V.
Friederichsen
,
S.
Nandi
,
G. B.
Ellison
,
D. E.
David
,
J. T.
McKinnon
,
T. G.
Lindeman
,
D. C.
Dayton
, and
M. R.
Nimlos
,
Rev. Sci. Instrum.
74
,
3077
(
2003
).
41.
E. B.
Jochnowitz
,
X.
Zhang
,
M. R.
Nimlos
,
M. E.
Varner
,
J. F.
Stanton
, and
G. B.
Ellison
,
J. Phys. Chem. A
109
,
3812
(
2004
).
42.
O. L.
Chapman
,
K.
Mattes
,
C. L.
McIntosh
,
J.
Pacansky
,
G. V.
Calder
, and
G.
Orr
,
J. Am. Chem. Soc.
95
,
6134
(
1973
).
43.
A. L.
Brown
,
D. C.
Dayton
,
M. R.
Nimlos
, and
J. W.
Daily
,
Chemosphere
42
,
663
(
2001
).
44.
S.
Nandi
,
P. A.
Arnold
,
B. K.
Carpenter
,
M. R.
Nimlos
,
D. C.
Dayton
, and
G. B.
Ellison
,
J. Phys. Chem. A
105
,
7514
(
2001
).
45.
X.
Zhang
,
V. M.
Bierbaum
,
G. B.
Ellison
, and
S.
Kato
,
J. Chem. Phys.
120
,
3531
(
2004
).
46.
X.
Zhang
,
S.
Kato
,
V. M.
Bierbaum
,
M. R.
Nimlos
, and
G. B.
Ellison
,
J. Phys. Chem. A
108
,
9733
(
2004
).
47.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
48.
A. K.
Wilson
,
T.
van Mourik
, and
T. H.
Dunning
, Jr.
,
J. Mol. Struct.: THEOCHEM
388
,
339
(
1996
).
49.
Extensible Computational Chemistry Environment Basis Set Database, Version 1.0, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC06-76RLO 1830.
50.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
51.
C. C. J.
Roothaan
,
Rev. Mod. Phys.
23
,
69
(
1951
).
52.
W. J.
Hehre
,
L.
Radom
,
P. v. R.
Schleyer
, and
J. A.
Pople
,
Ab Initio Molecular Orbital Theory
(
Wiley-Interscience
,
New York
,
1986
).
53.
J. A.
Pople
and
R. K.
Nesbet
,
J. Chem. Phys.
22
,
571
(
1954
).
54.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
, 1st ed., revised (
McGraw-Hill
,
New York
,
1989
).
55.
B. O.
Roos
, in
Ab Initio Methods in Quantum Chemistry, Part II
, edited by
K. P.
Lawley
(
Wiley
,
New York
,
1987
), p.
399
.
56.
D.
Cremer
, in
The Encyclopedia of Computational Chemistry
, edited by
P. v. R.
Schleyer
,
N. L.
Allinger
,
T.
Clark
,
J.
Gasteiger
,
P. A.
Kollmann
,
H. F.
Schaefer
 III
, and
P. R.
Schreiner
(
Wiley
,
Chichester
,
1998
), Vol.
3
, p.
1706
.
57.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley
,
Chichester
,
2000
).
58.
J. A.
Pople
,
J. S.
Binkley
, and
R.
Seeger
,
Int. J. Quantum Chem.
10
,
1
(
1976
).
59.
R. J.
Bartlett
,
Annu. Rev. Phys. Chem.
32
,
359
(
1981
).
60.
G. D.
Purvis
 III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
61.
J.
Paldus
, in
New Horizons of Quantum Chemistry
, edited by
P.-O.
Löwdin
and
B.
Pullmann
(
Reidel
,
Dordrecht
,
1983
), p.
31
.
62.
R. J.
Bartlett
,
C. E.
Dykstra
, and
J.
Paldus
, in
Advanced Theories and Computational Approaches to the Electronic Structure of Molecules
, edited by
C. E.
Dykstra
(
Reidel
,
Dordrecht
,
1984
), p.
127
.
63.
G. E.
Scuseria
,
A. C.
Scheiner
,
T. J.
Lee
,
J. E.
Rice
, and
H. F.
Schaefer
,
J. Chem. Phys.
86
,
2881
(
1987
).
64.
J.
Gauss
, in
The Encyclopedia of Computational Chemistry
, edited by
P. v. R.
Schleyer
,
N. L.
Allinger
,
T.
Clark
,
J.
Gasteiger
,
P. A.
Kollmann
,
H. F.
Schaefer
 III
, and
P. R.
Schreiner
(
Wiley
,
Chichester
,
1998
), Vol.
1
, p.
615
.
65.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
66.
G. E.
Scuseria
and
T. J.
Lee
,
J. Chem. Phys.
93
,
5851
(
1990
).
67.
J.
Noga
and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
7041
(
1987
).
68.
J.
Noga
and
R. J.
Bartlett
,
J. Chem. Phys.
89
,
3401
(
1988
).
69.
G. E.
Scuseria
and
H. F.
Schaefer
 III
,
Chem. Phys. Lett.
152
,
382
(
1988
).
70.
Y. J.
Bomble
,
J. F.
Stanton
,
M.
Kallay
, and
J.
Gauss
,
J. Chem. Phys.
123
,
054101
(
2005
).
71.
A. G.
Császár
,
W. D.
Allen
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
108
,
9751
(
1998
).
72.
W. D.
Allen
,
A. L. L.
East
, and
A. G.
Császár
, in
Structures and Conformations of Non-Rigid Molecules
, edited by
J.
Laane
,
M.
Dakkouri
,
B.
van der Vecken
, and
H.
Oberhammer
(
Kluwer
,
Dordrecht
,
1993
), p.
343
.
73.
A. G.
Császár
,
G.
Tarczay
,
M. L.
Leininger
,
O. L.
Polyansky
,
J.
Tennyson
, and
W. D.
Allen
, in
Spectroscopy from Space
, edited by
J.
Demaison
and
K.
Sarka
(
Kluwer
,
Dordrecht
,
2001
), p.
317
.
74.
J. M.
Gonzales
,
C.
Pak
,
R. S.
Cox
,
W. D.
Allen
,
H. F.
Schaefer
,
A. G.
Császár
, and
G.
Tarczay
,
Chem.-Eur. J.
9
,
2173
(
2003
).
75.
M. S.
Schuurman
,
S. R.
Muir
,
W. D.
Allen
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
120
,
11586
(
2004
).
76.
D.
Feller
,
J. Chem. Phys.
98
,
7059
(
1993
).
77.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
78.
Y.
Yamaguchi
,
Y.
Osamura
,
J. D.
Goddard
, and
H. F.
Schaefer
 III
,
A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory
(
Oxford University Press
,
New York
,
1994
).
79.
J.
Gauss
,
W. J.
Lauderdale
,
J. F.
Stanton
,
J. D.
Watts
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
182
,
207
(
1991
).
80.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
81.
N. C.
Handy
,
R. D.
Amos
,
J. F.
Gaw
,
J. E.
Rice
, and
E. D.
Simandiras
,
Chem. Phys. Lett.
120
,
151
(
1985
).
82.
E. D.
Simandiras
,
N. C.
Handy
, and
R. D.
Amos
,
Chem. Phys. Lett.
133
,
324
(
1987
).
83.
J.
Gauss
and
J. F.
Stanton
,
Chem. Phys. Lett.
276
,
70
(
1997
).
84.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
200
,
1
(
1992
).
85.
T. J.
Lee
and
A. P.
Rendell
,
J. Chem. Phys.
94
,
6229
(
1991
).
86.
J. F. Stanton, J. Gauss, J. D. Watts, P. G. Szalay, and R. J. Bartlett with contributions from A. A. Auer, D. B. Bernholdt, O. Christiansen, M. E. Harding, M. Heckert, O. Heun, C. Huber, D. Jonsson, J. Jusélius, W. J. Lauderdale, T. Metzroth, C. Michauk, K. Ruud, F. Schiffmann, and A. Tajti, and the integral packages: MOLECULE (J. Almlöf and P. R. Taylor), PROPS (P. R. Taylor), and ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and J. Olsen).
See also
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
,
P.. G.
Szalay
, and
R. J.
Bartlett
,
Int. J. Quantum Chem.
26
,
879
(
1992
). For current version see http://www.aces2.de
87.
H.-J.
Werner
,
P. J.
Knowles
,
M.
Schütz
 et al, MOLPRO, version 2002.6,
2002
; http://www.molpro.net
88.
E.
Aprà
,
T. L.
Windus
,
T. P.
Straatsma
 et al, NWCHEM, a computational chemistry package for parallel computers, version 4.7, Pacific Northwest National Laboratory, Richland, Washington,
2005
.
89.
R. A.
Kendall
,
E.
Apra
,
D. E.
Bernhold
 et al,
Comput. Phys. Commun.
128
,
260
(
2000
).
90.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
123
,
214105
(
2005
). The CCSDT(Q) computations were performed with MRCC, a string-based many-body program written by Mihály Kállay.
91.
S. G.
Lias
,
J. E.
Bartmess
,
J. F.
Liebman
,
J. L.
Holmes
,
R. D.
Levin
, and
W. G.
Mallard
,
J. Phys. Chem. Ref. Data Suppl.
17
,
1
(
1988
). All data taken from the NIST Negative Ion Energetics Database: NIST Standard Reference Database Number 69, June 2005 Release.
92.
K.-C.
Lau
and
C.-Y.
Ng
,
Acc. Chem. Res.
39
,
823
(
2006
).
93.
B.
Ruscic
,
A. F.
Wagner
,
L. B.
Harding
 et al,
J. Phys. Chem. A
106
,
2727
(
2002
).
94.
B.
Ruscic
,
J. E.
Boggs
,
A.
Burcat
 et al,
J. Phys. Chem. Ref. Data
34
,
573
(
2005
).
95.
Y.
Shi
and
K. M.
Ervin
,
Chem. Phys. Lett.
318
,
149
(
2000
).
96.
C. E.
Moore
,
Atomic Energy Levels
, Natl. Bur. Stand. (U.S.) Circ. No. 467 (
U.S. GPO
, Washington, D.C.,
1971
.
97.
W. T.
Borden
,
R. J.
Loncharich
, and
K. N.
Houk
,
Annu. Rev. Phys. Chem.
39
,
213
(
1988
).
98.
K. N.
Houk
,
R. J.
Loncharich
,
J. F.
Blake
, and
W. L.
Jorgensen
,
J. Am. Chem. Soc.
111
,
9172
(
1989
).
99.
K. N.
Houk
,
Y.
Li
, and
J. D.
Evanseck
,
Angew. Chem., Int. Ed. Engl.
31
,
682
(
1992
).
100.
H. H.
Wenk
,
M.
Winkler
, and
W.
Sander
,
Angew. Chem., Int. Ed.
42
,
502
(
2003
).
101.
See EPAPS Document No. E-JCPSA6-126-003702 for a pdf file containing optimum geometric structures of o-benzyne, acetylene, diacetylene, and the retro-Diels-Alder transition state at several levels of theory, as well as CCSD(T)/cc-pVDZ harmonic vibrational frequencies for these stationary points. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
102.
L. V.
Gurvich
,
I. V.
Veyts
,
C. B.
Alcock
, and
V. S.
Iorish
,
Thermodynamic Properties of Individual Substances
, 4th ed., Vol. 2, Parts 1 & 2 (
Hemisphere
,
New York
,
1991
).
103.
J.
Gauss
and
J. F.
Stanton
,
J. Phys. Chem. A
104
,
2865
(
2000
).
104.
A. C.
Scheiner
,
H. F.
Schaefer
, and
B.
Liu
,
J. Am. Chem. Soc.
111
,
3118
(
1989
).
105.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem.
23
,
199
(
1989
).
106.
P. D.
Jarowski
,
M. D.
Wodrich
,
C. S.
Wannere
,
P. v. R.
Schleyer
, and
K. N.
Houk
,
J. Am. Chem. Soc.
126
,
15036
(
2004
).
107.
M.
Herman
,
A.
Campargue
,
M. I.
El Idrissi
, and
J.
Vander Auwera
,
J. Phys. Chem. Ref. Data
32
,
921
(
2003
).
108.
K. L.
Bak
,
J.
Gauss
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
J. F.
Stanton
,
J. Chem. Phys.
114
,
6548
(
2001
).
109.
R. B.
Woodward
and
R.
Hoffmann
,
The Conservation of Orbital Symmetry
(
Academic
,
New York
,
1970
).
110.
A. M.
Mebel
,
K.
Morokuma
, and
M. C.
Lin
,
J. Chem. Phys.
103
,
3440
(
1995
).
111.
Of principal concern is the following text from Wang et al. regarding the barrier (critical energy) of the reaction: “Single-point calculations at CASSCF(6,6) MP26-31G(d) and CASSCF(6,6) MP2/cc-pVTZ yielded a critical energy, E0, equal to 87 and 72kcalmol1, respectively. The enthalpy of reaction of o-C6H4C2H2+C4H2 was predicted to be 60 and 44kcalmol1 with the 6-31G(d) and cc-pVTZ basis sets, respectively. These values differ by nearly the same amount as that of the critical energy. Correcting the reaction enthalpies by the thermochemical data of Table I, and assuming that the same correction can be made for the critical energy, we obtained E0=83 and 84kcalmol1 with the 6-31G(d) and cc-pVTZ basis sets, respectively. These values are supported by a single-point CASPT2/ANO-S calculation, which gave 83kcalmol1.” According to the data in our Table I, the sensitivity of the reaction energetics to the 6-31G(d)cc-pVTZ basis set improvement should be much less severe than roughly 15kcalmol1. In addition, the CASMP2 method of McDouall et al. employed with the cc-pVTZ basis should not fail so seriously for this problem. [
J. J. W.
McDouall
,
K.
Peasley
, and
M. A.
Robb
,
Chem. Phys. Lett.
148
,
183
(
1988
)].
112.
M. A.
Temsamani
and
M.
Herman
,
J. Chem. Phys.
102
,
6371
(
1995
).
113.
C. D.
Sherrill
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
113
,
1447
(
2000
).
114.
M.
Allan
,
J. Chem. Phys.
80
,
6020
(
1984
).
115.
F.
Vila
,
P.
Borowski
, and
K. D.
Jordan
,
J. Phys. Chem. A
104
,
9009
(
2000
).
116.
K. M.
Pamidimukkala
,
R. D.
Kern
,
M. R.
Patel
,
H. C.
Wei
, and
J. H.
Kiefer
,
J. Phys. Chem.
91
,
2148
(
1987
).
117.
B.
Ruscic
,
R. E.
Pinzon
,
M. L.
Morton
,
G.
von Laszevski
,
S. J.
Bittner
,
S. G.
Nijsure
,
K. A.
Amin
,
M.
Minkoff
, and
A. F.
Wagner
,
J. Phys. Chem. A
108
,
9979
(
2004
).
118.
B.
Ruscic
,
R. E.
Pinzon
,
G.
von Laszewski
,
D.
Kodeboyina
,
A.
Burcat
,
D.
Leahy
,
D.
Montoya
, and
A. F.
Wagner
,
J. Phys.: Conf. Ser.
16
,
561
(
2005
).
119.
B.
Ruscic
,
McGraw-Hill Encyclopedia of Science and Technology
(
McGraw-Hill
,
New York
,
2004
), p.
3
.
120.
B.
Ruscic
,
R. E.
Pinzon
,
M. L.
Morton
,
N. K.
Srinivasan
,
M. C.
Su
,
J. W.
Sutherland
, and
J. V.
Michael
,
J. Phys. Chem. A
110
,
6592
(
2006
).
121.
B.
Ruscic
,
M.
Litorja
, and
R. L.
Asher
,
J. Phys. Chem. A
103
,
8625
(
1999
).
122.
M.
Litorja
and
B.
Ruscic
,
J. Chem. Phys.
107
,
9852
(
1997
).
123.
J. A.
Blush
,
P.
Chen
,
R. T.
Wiedmann
, and
M. G.
White
,
J. Chem. Phys.
98
,
3557
(
1993
).
124.
G.
Herzberg
,
Proc. R. Soc. London, Ser. A
262
,
291
(
1961
).
125.
F. D.
Rossini
,
J. Res. Natl. Bur. Stand.
6
,
37
(
1931
).
126.
F. D.
Rossini
,
J. Res. Nat. Bur. Stand.
7
,
329
(
1931
).
127.
W. A.
Roth
and
H.
Banse
,
Arch. Eisenhuettenwes.
6
,
43
(
1932
).
128.
F. D.
Rossini
,
Chem. Rev. (Washington, D.C.)
27
,
1
(
1940
).
129.
D. A.
Pittam
and
G.
Pilcher
,
J. Chem. Soc., Faraday Trans. 1
68
,
2224
(
1972
).
130.
A.
Dale
,
C.
Lythall
,
J.
Aucott
, and
C.
Sayer
,
Thermochim. Acta
382
,
47
(
2002
).
131.
Y. I.
Alexsandrov
,
E. N.
Korchagina
, and
A. G.
Chunovkina
,
Meas. Tech.
45
,
268
(
2002
).
132.
Y. I.
Alexandrov
,
Thermochim. Acta
382
,
55
(
2002
).
133.
E. J.
Prosen
,
R.
Gilmont
, and
F. D.
Rossini
,
J. Res. Natl. Bur. Stand.
34
,
65
(
1945
).
134.
W. H.
Johnson
,
E. J.
Prosen
, and
F. D.
Rossini
,
J. Res. Natl. Bur. Stand.
39
,
49
(
1947
).
135.
W. D.
Good
and
N. K.
Smith
,
J. Chem. Eng. Data
14
,
102
(
1969
).
136.
J.
Coops
,
D.
Mulder
,
J. W.
Dienske
, and
J.
Smittenberg
,
Rev. Trav. Chim.
65
,
128
(
1946
).
137.
V.
Majer
and
V.
Svoboda
,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation
(
Blackwell
,
Oxford
,
1985
).
138.
N. S.
Osborne
and
D. C.
Ginnings
,
J. Res. Natl. Bur. Stand.
39
,
453
(
1947
).
139.
N. L.
Yarym-Agaev
,
N. N.
Feodosev
, and
K. G.
Skorikov
,
Zh. Oxford. Fiz. Khim.
24
,
1061
(
1950
).
140.
R. J. L.
Andon
,
J. D.
Cox
,
E. F. G.
Herington
, and
J. F.
Martin
,
Trans. Faraday Soc.
53
,
1074
(
1957
).
141.
D. W.
Scott
,
G. B.
Guthrie
,
J. F.
Messerly
,
S. S.
Todd
,
W. T.
Berg
,
I. A.
Hossenlopp
, and
J. P.
McCullough
,
J. Phys. Chem.
66
,
911
(
1962
).
142.
J. D.
Cox
,
D. D.
Wagman
, and
V. A.
Medvedev
,
CODATA Key Values for Thermodynamics
(
Hemisphere
,
New York
,
1989
).
143.
L. V.
Gurvich
,
I. V.
Veyts
, and
C. B.
Alcock
,
Thermodynamic Properties of Individual Substances
, 4th ed., Vol. 1, Parts 1 & 2 (
Hemisphere
,
New York
,
1989
).
144.
M. W.
Chase
, Jr.
,
C. A.
Davies
,
J. R.
Downey
, Jr.
,
D. J.
Frurip
,
R. A.
McDonald
, and
A. N.
Syverud
,
Thermochemical Tables
, 3rd ed.,
J. Phys. Chem. Ref. Data Suppl.
14
,
1
(
1985
).
145.
M. W.
Chase
, Jr.
,
NIST-JANAF Thermochemical Tables
, 4th ed.,
J. Phys. Chem. Ref. Data Monogr.
9
(
1998
).
146.
B. J.
McBride
and
S.
Gordon
,
Properties and Coefficients: Computer Program for Calculating and Fitting Thermodynamic Functions
, NASA Ref. Pub. 1271 (
NASA
,
Cleveland
,
1992
).
147.
A. P.
Hitchcock
and
J. D.
Laposa
,
J. Mol. Spectrosc.
54
,
223
(
1975
).
148.
M. E.
Jacox
,
J. Phys. Chem. Ref. Data
32
,
1
(
2003
).
149.
M. E.
Jacox
,
J. Phys. Chem. Ref. Data Monogr.
3
(
1994
).
150.
S. J.
Klippenstein
,
L. B.
Harding
, and
Y.
Georgievskii
,
Appl. Categ. Struct.
(submitted).
151.
T. L.
Conner
,
W. A.
Lonneman
, and
R. L.
Seila
,
J. Air Waste Manage. Assoc.
45
,
383
(
1995
).

Supplementary Material

You do not currently have access to this content.