Vibrational excitation (νfνi) cross-sections σνfνi(E) in resonant e-N2 and e-H2 scattering are calculated from transition matrix elements Tνf,νi(E) obtained using Fourier transform of the cross correlation function ϕνf(R)ψνi(R,t), where ψνi(R,t)eiHA2(R)tϕνi(R) with time evolution under the influence of the resonance anionic Hamiltonian HA2(A2=N2H2) implemented using Lanczos and fast Fourier transforms. The target (A2) vibrational eigenfunctions ϕνi(R) and ϕνf(R) are calculated using Fourier grid Hamiltonian method applied to potential energy (PE) curves of the neutral target. Application of this simple systematization to calculate vibrational structure in e-N2 and e-H2 scattering cross-sections provides mechanistic insights into features underlying presence/absence of structure in e-N2 and e-H2 scattering cross-sections. The results obtained with approximate PE curves are in reasonable agreement with experimental/calculated cross-section profiles, and cross correlation functions provide a simple demarcation between the boomerang and impulse models.

2.
H. S.
Taylor
,
Adv. Chem. Phys.
18
,
91
(
1970
).
3.
D. T.
Birtwistle
and
A.
Herzenberg
,
J. Phys. B
4
,
53
(
1971
).
4.
G. J.
Schulz
,
Rev. Mod. Phys.
45
,
423
(
1973
).
5.
K. D.
Jordan
and
P. D.
Burrow
,
Acc. Chem. Res.
11
,
341
(
1978
).
6.
L.
Dubé
and
A.
Herzenberg
,
Phys. Rev. A
20
,
194
(
1979
).
7.
B. I.
Schneider
,
M. L.
Dourneuf
, and
V. K.
Lan
,
Phys. Rev. Lett.
43
,
1926
(
1979
).
8.
B. I.
Schneider
,
M. L.
Dourneuf
, and
P. G.
Burke
,
J. Phys. B
12
,
L365
(
1979
).
9.
A. U.
Hazi
,
T. N.
Rescigno
, and
M.
Kurilla
,
Phys. Rev. A
23
,
1089
(
1981
).
10.
L. S.
Cederbaum
and
W.
Domcke
,
J. Phys. B
14
,
4665
(
1981
).
11.
C. W.
McCurdy
and
J. L.
Turner
,
J. Chem. Phys.
78
,
6773
(
1983
).
12.
J.
Simons
and
K. D.
Jordan
,
Chem. Rev. (Washington, D.C.)
87
,
535
(
1987
).
15.
K.
Houfek
,
T. N.
Rescigno
, and
C. W.
McCurdy
,
Phys. Rev. A
73
,
032721
(
2006
).
16.
J. N.
Bardsley
and
J. M.
Wadehra
,
Phys. Rev. A
20
,
1398
(
1979
).
17.
T. N.
Rescigno
,
B. K.
Elza
, and
B. H.
Lengsfield
,
J. Phys. B
26
,
L567
(
1993
).
18.
M.
Berman
,
C.
Mündel
, and
W.
Domcke
,
Phys. Rev. A
31
,
641
(
1985
);
M.
Berman
,
C.
Mündel
, and
W.
Domcke
,
Phys. Rev. A
32
,
181
(
1985
).
20.
E.
Narevicius
and
N.
Moiseyev
,
Phys. Rev. Lett.
81
,
2221
(
1998
).
21.
E.
Narevicius
and
N.
Moiseyev
,
Phys. Rev. Lett.
84
,
1681
(
2000
).
22.
J.
Horáček
,
M.
Číżek
,
K.
Houfek
,
P.
Kolorenč
, and
W.
Domcke
,
Phys. Rev. A
73
,
022701
(
2006
), and references therein.
23.
E. J.
Heller
,
Acc. Chem. Res.
14
,
368
(
1981
).
24.
C. C.
Marston
and
G. G.
Balint-Kurti
,
J. Chem. Phys.
91
,
3571
(
1989
).
25.
G. G.
Balint-Kurti
,
R. N.
Dixon
, and
C. C.
Marston
,
Int. Rev. Phys. Chem.
11
,
317
(
1992
).
26.
C.
Leforestier
,
R. H.
Bisseling
,
C.
Cerjan
 et al.,
J. Comput. Phys.
94
,
59
(
1991
).
27.
D.
Kosloff
and
R.
Kosloff
,
J. Comput. Phys.
52
,
35
(
1983
).
28.
R. J.
Gdanitz
,
Chem. Phys. Lett.
283
,
253
(
1998
).
29.
W.
Kolos
and
L.
Wolniewicz
,
J. Chem. Phys.
43
,
2429
(
1965
).
30.
D. L.
Yeager
and
M. K.
Mishra
,
Int. J. Quantum Chem.
104
,
871
(
2005
).
31.
N.
Moiseyev
and
C.
Corcoran
,
Phys. Rev. A
20
,
814
(
1979
).
32.
C. W.
McCurdy
and
R. C.
Mowrey
,
Phys. Rev. A
25
,
2529
(
1982
).
33.
Y.
Sajeev
,
R.
Santra
, and
S.
Pal
,
J. Chem. Phys.
122
,
234320
(
2005
).
34.
M.
Berman
,
W.
Domcke
, and
L. S.
Cederbaum
,
J. Phys. B
16
,
875
(
1983
).
35.
M.
Sarma
,
S.
Adhikari
, and
M. K.
Mishra
,
Chem. Phys. Lett.
420
,
321
(
2006
).
You do not currently have access to this content.