Several lowest-lying singlet electronic states of vinyl fluoride, trans-, cis-, and 1,1-difluoroethylene, trifluoroethylene, and tetrafluoroethylene were investigated by using symmetry-adapted cluster configuration interaction theory. Basis sets up to Dunning’s aug-cc-pVTZ augmented with appropriate Rydberg functions were utilized for the calculations. Calculated excitation energies show a good agreement with the available experimental values. Even in the troublesome ππ* transitions, the excitation energies obtained in the present study agree well with the experimental values except in one or two fluoroethylenes. Strong mixing between different states was noticed in a few fluoroethylenes; especially the mixing is very strong between π-π* and π-3pπ states in trifluoroethylene. No pure π-σ* excited state was found in almost all the fluoroethylenes. Several assignments and reassignments of features in the experimental spectra were suggested. The present study does not support the existing argument that the interaction between the π-π* and σ-σ* states is the reason behind the blueshift of around 1.25eV in the π-π* excitation energy of tetrafluoroethylene. Possible reasons, including structural changes, for this shift are discussed in detail. Several low-lying triplet excited states were also studied.

1.
G.
Belanger
and
C.
Sandorfy
,
J. Chem. Phys.
55
,
2055
(
1971
).
2.
R. F.
Lake
and
H.
Thompson
,
Proc. R. Soc. London, Ser. A
315
,
323
(
1970
).
3.
P.
Dauber
and
M.
Brith
,
Chem. Phys.
11
,
143
(
1975
).
4.
M. J.
Coggiola
,
W. M.
Flicker
,
O. A.
Mosher
, and
A.
Kuppermann
,
J. Chem. Phys.
65
,
2655
(
1976
).
5.
G. J.
Verhaart
and
H. H.
Brongersma
,
Chem. Phys.
52
,
431
(
1980
).
6.
S.
Eden
,
P.
Limao-Vieira
,
P. A.
Kendall
 et al,
Chem. Phys.
297
,
257
(
2004
).
7.
M. B.
Robin
,
Higher Excited States of Polyatomic Molecules
(
Academic
,
New York
,
1975
), Vol.
2
, p.
56
.
8.
M. B.
Robin
,
Higher Excited States of Polyatomic Molecules
(
Academic
,
New York
,
1985
), Vol.
3
, p.
236
.
9.
W. A.
Guillory
and
G. H.
Andrews
,
J. Chem. Phys.
62
,
3208
(
1975
).
10.
T. K.
Minton
,
P.
Felder
,
R. C.
Scales
, and
J. R.
Huber
,
Chem. Phys. Lett.
164
,
113
(
1989
).
11.
G. E.
Hall
,
J. T.
Muckerman
,
J. M.
Preses
,
R. E.
Weston
, Jr.
,
G. W.
Flynn
, and
A.
Persky
,
J. Chem. Phys.
101
,
3679
(
1994
).
12.
K.
Sato
,
S.
Tsunashima
,
T.
Takayanagi
,
G.
Fujisawa
, and
A.
Yokoyama
,
Chem. Phys. Lett.
242
,
401
(
1995
).
13.
B. A.
Balko
,
J.
Zhang
, and
Y. T.
Lee
,
J. Phys. Chem. A
101
,
6611
(
1997
).
14.
J. J.
Lin
,
S. M.
Wu
,
D. W.
Hwang
,
Y. T.
Lee
, and
X.
Yang
,
J. Chem. Phys.
109
,
10838
(
1998
).
15.
J. J.
Lin
,
T. C.
Hsu
,
D. W.
Hwang
,
Y. T.
Lee
, and
X.
Yang
,
J. Chem. Phys.
109
,
10719
(
1998
).
16.
S.-R.
Lin
and
Y.-P.
Lee
,
J. Chem. Phys.
111
,
9233
(
1999
).
17.
S.-R.
Lin
,
S.-C.
Lin
,
Y.-C.
Lee
,
Y.-C.
Chou
,
I.-C.
Chen
, and
Y.-P.
Lee
,
J. Chem. Phys.
114
,
7396
(
2001
).
18.
S. A.
Trushin
,
S.
Sorgues
,
W.
Fub
, and
W. E.
Schmid
,
ChemPhysChem
5
,
1389
(
2004
).
19.
Z. R.
Grabowski
and
A.
Bylina
,
Trans. Faraday Soc.
60
,
1131
(
1964
).
20.
C. R.
Brundle
,
M. B.
Robin
,
N. A.
Kuebler
, and
H.
Basch
,
J. Am. Chem. Soc.
94
,
1451
(
1972
).
21.
H.
Nakatsuji
and
K.
Hirao
,
J. Chem. Phys.
68
,
2053
(
1978
).
22.
H.
Nakatsuji
,
Chem. Phys. Lett.
59
,
362
(
1978
).
23.
H.
Nakatsuji
,
Chem. Phys. Lett.
67
,
329
(
1979
);
H.
Nakatsuji
,
Chem. Phys. Lett.
67
,
334
(
1979
).
24.
H.
Nakatsuji
,
Acta Chim. Hung.
129
,
719
(
1992
);
Computational Chemistry - Review of Current Trends
(
World Scientific
,
Singapore
,
1997
), Vol.
2
, pp.
62
124
.
25.
M.
Barbatti
,
A. J. A.
Aquino
, and
H.
Lischka
,
J. Phys. Chem. A
109
,
5168
(
2005
).
26.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, Revision B.01,
Gaussian, Inc.
, Pittsburgh, PA,
2003
.
27.
T. H.
Dunning
,Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
);
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
28.
S.
Arulmozhiraja
,
R.
Fukuda
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Chem. Phys.
124
,
034312
(
2006
).
29.
B. J.
Smith
,
D.
Coffey
, Jr.
, and
L.
Radom
,
J. Chem. Phys.
97
,
6113
(
1992
).
30.
N. C.
Craig
,
O. P.
Abiog
,
B.
Hu
,
S. C.
Stone
,
W. J.
Lafferty
, and
L.-H.
Xu
,
J. Phys. Chem.
100
,
5310
(
1996
).
31.
M. D.
Harmony
,
V. W.
Laurie
,
R. L.
Kuczkowski
,
R. H.
Schwendeman
,
D. A.
Ramsay
,
F. J.
Lovas
,
W. J.
Lafferty
, and
A. G.
Maki
,
J. Phys. Chem. Ref. Data
8
,
619
(
1979
).
32.
F. C.
Mijlhoff
,
G. H.
Renes
,
K.
Kohata
,
K.
Oyanagi
, and
K.
Kuchitsu
,
J. Mol. Struct.
39
,
241
(
1977
).
33.
J. H.
Moore
 Jr.
,
J. Phys. Chem.
76
,
1130
(
1972
).
34.
J. L.
Carlos
,
R. R.
Karl
, and
S. H.
Bauer
,
J. Chem. Soc., Faraday Trans. 2
70
,
177
(
1974
).
35.
C.
Winstead
and
V.
McKoy
,
J. Chem. Phys.
116
,
1380
(
2002
).
36.
Y. J.
Bomble
,
K. W.
Sattelmeyer
,
J. F.
Stanton
, and
J.
Gauss
,
J. Chem. Phys.
121
,
5236
(
2004
).
37.
I.
Garcia-Cuesta
,
A. M. J.
Sanchez de Meras
, and
H.
Koch
,
J. Chem. Phys.
118
,
8216
(
2003
).
38.
C.
Petrongolo
,
R. J.
Buenker
, and
S. D.
Peyerimhoff
,
J. Chem. Phys.
76
,
3655
(
1982
).
39.
D. R.
Salahub
,
Theor. Chim. Acta
22
,
330
(
1971
).
40.
N. S.
Chiu
,
P. D.
Burrow
, and
K. D.
Jordan
,
Chem. Phys. Lett.
68
,
121
(
1979
).
41.
E.
Hirota
,
Y.
Endo
,
S.
Saito
,
K.
Yoshida
,
I.
Yamaguchi
, and
K.
Machida
,
J. Mol. Spectrosc.
89
,
223
(
1981
).
42.
V.
Mom
,
P. A. G.
Huisman
,
F. C.
Mijlhoff
, and
G. H.
Renes
,
J. Mol. Struct.
62
,
95
(
1980
).
You do not currently have access to this content.