We reexamine the Herzberg-Teller theory of charge-transfer contributions to the theory of surface enhanced Raman scattering (SERS). In previous work, the Kramers-Heisenberg-Dirac framework was utilized to explain many of the observed features in SERS. However, recent experimental and theoretical developments suggest that we revise the theory to take advantage of the time-dependent picture of Raman scattering. Results are obtained for molecular adsorption on nanoparticles in both the strong confinement limit and the weak confinement limit. We show that the Herzberg-Teller contributions to the charge-transfer effect in SERS display a resonance at the molecule-to-metal or metal-to-molecule transition while retaining the selection rules associated with normal Raman spectroscopy (i.e., harmonic oscillator, as opposed to Franck-Condon overlaps). The charge-transfer contribution to the enhancement factor scales as Γ4, where Γ is the homogeneous linewidth of the charge-transfer transition, and thus is extremely sensitive to the magnitude of this parameter. We show that the Herzberg-Teller coupling term may be associated with the polaron-coupling constant of the surface phonon-electron interaction. A time-dependent expression for the Raman amplitude is developed, and we discuss the implications of these results for both metal and semiconductor nanoparticle surfaces.

1.
R. P.
Van Duyne
,
Chemical and Biochemical Applications of Lasers
, edited by
C. B.
Moore
(
Academic
,
New York
,
1979
), Vol.
4
, Chap. 5.
2.
T. E.
Furtak
,
Advances in Laser Spectroscopy
, edited by
B.
Garetz
and
J. R.
Lombardi
(
Wiley
,
Chichester
,
1984
), Vol.
2
, p.
175
.
3.
R. L.
Birke
and
J. R.
Lombardi
,
Advances in Laser Spectroscopy
, edited by
B.
Garetz
and
J. R.
Lombardi
(
Heyden
,
Philadelphia
,
1982
), Vol.
1
, p.
143
.
4.
E.
Burstein
,
Y. J.
Chen
,
S.
Lundquist
, and
E.
Tosatti
,
Solid State Commun.
21
,
567
(
1979
).
5.
B. N. J.
Perrson
,
Chem. Phys. Lett.
82
,
561
(
1981
).
6.
J. I.
Gersten
,
R. L.
Birke
, and
J. R.
Lombardi
,
Phys. Rev. Lett.
43
,
147
(
1979
).
7.
T.
Maniv
and
H.
Metiu
,
Chem. Phys. Lett.
79
,
79
(
1981
).
8.
J. E.
Demuth
and
N.
Sanda
,
Phys. Rev. Lett.
47
,
57
(
1981
).
9.
S.
Centeno
,
I.
Lopez-Tocon
,
J. F.
Arenas
,
J.
Soto
, and
J. C.
Otero
,
J. Phys. Chem. B
110
,
14916
(
2006
).
10.
J. R.
Lombardi
,
R. L.
Birke
,
T.
Lu
, and
J.
Xu
,
J. Chem. Phys.
84
,
4174
(
1986
).
11.
A. C.
Albrecht
,
J. Chem. Phys.
34
,
1476
(
1961
).
12.
S.
Nie
and
S. R.
Emory
,
Science
275
,
1102
(
1997
).
13.
K.
Kneipp
,
Y.
Wang
,
H.
Kneipp
,
L.
Perelman
,
I.
Itzkan
,
R. R.
Dasari
, and
M. S.
Feld
,
Phys. Rev. Lett.
78
,
1667
(
1997
).
14.
H.
Xu
,
E.
Bjerneld
,
M.
Käll
, and
L.
Börjesson
,
Phys. Rev. Lett.
83
,
4357
(
1999
).
15.
A. M.
Michaels
,
J.
Jiang
, and
L. E.
Brus
,
J. Phys. Chem. B
104
,
11965
(
2000
).
16.
K. A.
Bosnick
,
J.
Jiang
, and
L. E.
Brus
,
J. Phys. Chem. B
106
,
8096
(
2002
).
17.
K. A.
Bosnick
,
J.
Jiang
, and
L. E.
Brus
,
J. Phys. Chem. B
106
,
11965
(
2002
).
18.
T. L.
Haslett
,
L.
Tay
, and
M.
Moskovits
,
J. Chem. Phys.
113
,
1641
(
2000
).
19.
W. E.
Doering
and
S.
Nie
,
J. Phys. Chem. B
106
,
311
(
2002
).
20.
Y.
Sharaabi
,
T.
Shegai
, and
G.
Haran
,
Chem. Phys.
318
,
44
(
2005
).
21.
K.
Kneipp
,
Y.
Wang
,
H.
Kneipp
,
I.
Itzkan
,
R. R.
Daran
, and
M. S.
Feld
,
Phys. Rev. Lett.
76
,
2444
(
1996
).
22.
T. L.
Haslet
,
L.
Tay
, and
M.
Moslrovits
,
J. Chem. Phys.
113
,
1641
(
2000
).
23.
A. M.
Michaels
,
M.
Nirmal
, and
L. E.
Brus
,
J. Am. Chem. Soc.
121
,
9932
(
1999
).
24.
A. G.
Brolo
,
A. C.
Sanderson
, and
A. P.
Smith
,
Phys. Rev. B
69
,
045424
(
2004
).
26.
A. M.
Michaels
,
M.
Nirmal
, and
L. E.
Brus
,
J. Am. Chem. Soc.
121
,
9932
(
1999
).
27.
T.
Watanabe
,
N.
Yanagihara
,
K.
Honda
,
B.
Pettinger
, and
L.
Moerl
,
Chem. Phys. Lett.
96
,
649
(
1983
).
28.
T. E.
Futak
and
D.
Roy
,
Phys. Rev. Lett.
50
,
1301
(
1983
).
29.
L.
Moerl
and
B.
Pettinger
,
Solid State Commun.
43
,
315
(
1982
).
30.
P.
Hildebrandt
and
M.
Stockburger
,
J. Phys. Chem.
88
,
5935
(
1984
).
31.
A.
Campion
,
J. E.
Ivanecky
 III
,
C. M.
Child
, and
M.
Foster
,
J. Am. Chem. Soc.
117
,
11807
(
1995
).
32.
P.
Kambhampati
,
C. M.
Child
,
M. C.
Foster
, and
A.
Campion
,
J. Chem. Phys.
108
,
5013
(
1998
).
33.
Q.
Zhou
,
Q.
Fan
,
Y.
Zhuang
,
Y.
Li
,
G.
Zhao
, and
J.
Zheng
,
J. Phys. Chem. B
110
,
12029
(
2006
).
34.
L.
Peyser-Capadona
,
J.
Zheng
,
J. I.
Gonzales
,
T.-H.
Lee
,
S. A.
Patel
, and
R. M.
Dickson
,
Phys. Rev. Lett.
94
,
058301
(
2005
).
35.
Z. Q.
Tian
and
B.
Ren
,
Annu. Rev. Phys. Chem.
55
,
197
(
2004
).
36.
Z. Q.
Tian
and
B.
Ren
,
Infrared and Raman Spectroscopy in Analysis of Surfaces
, in
Encyclopedia of Analytical Chemistry
, edited by
R. A.
Meyers
(
Wiley
,
New York
,
2000
), pp.
9162
9201
.
37.
Q. J.
Huang
,
X. Q.
Li
,
J. L.
Yao
,
B.
Ren
,
W. B.
Cai
,
J. S.
Gao
,
B. W.
Mao
, and
Z. Q.
Tian
,
Surf. Sci.
427
,
162
(
1999
).
38.
P. G.
Cao
,
J. L.
Yao
,
B.
Ren
,
B. W.
Mao
,
R. A.
Gu
, and
Z. Q.
Tian
,
Chem. Phys. Lett.
316
,
1
(
2000
).
39.
L. G.
Quagliano
,
J. Am. Chem. Soc.
126
,
7393
(
2004
).
40.
R.
Livingstone
,
L. G.
Quagliano
,
N.
Perez-Paz
,
M.
Munoz
,
M. C.
Tamargo
,
F.
Jean-Mary
, and
J. R.
Lombardi
,
Proc. SPIE
6008
,
10
(
2005
).
41.
Y.
Wang
,
Z.
Sun
,
Y.
Wang
,
H.
Hu
,
B.
Zhao
,
W.
Xu
, and
J. R.
Lombardi
,
Spectrochim. Acta, Part A
66A
,
1199
1203
(
2007
).
42.
Y.
Wang
,
Z.
Sun
,
Y.
Wang
,
H.
Hu
,
S.
Jing
,
B.
Zhao
,
W.
Xu
,
C.
Zhao
, and
J. R.
Lombardi
,
J. Raman Spectrosc.
38
,
34
(
2007
).
43.
Y.
Wang
,
Y.
Wang
,
J.
Zhang
,
H.
Hu
,
J.
Zhang
,
B.
Zhao
,
B.
Yang
, and
J. R.
Lombardi
(unpublished).
44.
Y.
Wang
,
J.
Zhang
,
H.
Jia
,
M.
Li
,
J.
Zeng
,
B.
Yang
,
B.
Zhao
,
W.
Xu
, and
J. R.
Lombardi
(unpublished).
45.
L.
Zhao
,
L.
Jensen
, and
G.
Schatz
,
J. Am. Chem. Soc.
128
,
2911
(
2006
).
46.
L.
Zhao
,
L.
Jensen
, and
G.
Schatz
,
Nano Lett.
6
,
1229
(
2006
).
47.
J.
Zhou
,
Z.-H.
Li
,
W.-N.
Wang
, and
K.-N.
Fan
,
J. Phys. Chem. A
110
,
7167
(
2006
).
48.
S.-Y.
Lee
and
E. J.
Heller
,
J. Chem. Phys.
71
,
4777
(
1979
).
49.
E. J.
Heller
,
Acc. Chem. Res.
14
,
368
(
1981
).
50.
E. J.
Heller
,
R. L.
Sundberg
, and
D.
Tannor
,
J. Phys. Chem.
86
,
1822
(
1982
).
51.
D. J.
Tannor
and
E. J.
Heller
,
J. Chem. Phys.
77
,
202
(
1982
).
52.
S.-Y.
Lee
,
J. Chem. Phys.
76
,
3064
(
1982
).
53.
S.-Y.
Lee
,
J. Chem. Phys.
78
,
723
(
1983
).
54.
H. A.
Kramers
and
W.
Heisenberg
,
Z. Phys.
31
,
681
(
1925
).
55.
P. A. M.
Dirac
,
Proc. R. Soc. London, Ser. A
114
,
710
(
1927
).
56.
ADF
(http://www.scm.com),
2005
.
57.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonesca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Zeigler
,
J. Comput. Chem.
22
,
931
(
2001
).
58.
R. L.
Birke
and
J. R.
Lombardi
,
Spectroelectrochemisty: Theory and Practice
, edited by
R. J.
Gale
(
Plenum
,
New York
,
1988
), Chap. 6, p.
263
.
59.
Q.
Zhou
,
G.
Zhao
,
Y.
Chao
,
Y.
Li
,
Y.
Wu
, and
J.
Zheng
,
J. Phys. Chem. C.
111
,
1951
(
2007
).
60.
J. L.
Gersten
,
R. L.
Birke
, and
J. R.
Lombardi
,
Phys. Rev. Lett.
43
,
147
(
1979
).
61.
J. R.
Lombardi
,
E. A.
Sheilds-Knight
, and
R. L.
Birke
,
Chem. Phys. Lett.
79
,
214
(
1981
).
62.
G. A.
Narvaez
,
J.
Kim
, and
J. W.
Wilkins
,
Phys. Rev. B
72
,
155411
(
2005
).
63.
W.
Akemann
,
A.
Otto
, and
H. R.
Schober
,
Phys. Rev. Lett.
79
,
5050
(
1997
).
64.
C.
Kittel
,
Quantum Theory of Solids
(
Wiley
,
New York
,
1987
).
65.
P. B.
Allen
, in
Quantum Theory of Real Materials
, edited by
J. R.
Chelikowsky
and
S. G.
Louie
(
Kluwer
,
Boston
,
1996
), Chap. 17, pp.
219
250
.
66.
P. B.
Allen
and
B.
Mitrovic
,
Solid State Phys.
37
,
1
(
1982
).
67.
J. M.
Ziman
,
Electrons and Phonons
, (
Clarendon
,
Oxford
,
1967
).
68.
S.
Gosavi
and
R. A.
Marcus
,
J. Phys. Chem. B
104
,
2067
(
2000
).
69.
N. W.
Aschroft
and
N. D.
Mermin
,
Solid State Physics
(
Brooks-Cole
,
Belmont, MA
,
1976
), Appendix C, p.
760
.
70.
R. L.
Birke
,
Q.
Huang
,
T.
Spataru
, and
D. K.
Gosser
,
J. Am. Chem. Soc.
128
,
1922
(
2006
).
71.
W. J.
Royes
,
A. M.
Fajardo
, and
N. S.
Lewis
,
J. Phys. Chem. B
101
,
11152
(
1997
).
72.
73.
P. B.
Allen
,
Handbook of Superconductivity
, edited by
C. P.
Poole
, Jr.
(
Academic
,
New York
,
1999
).
74.
J. J.
Paggel
,
D.-A.
Luh
,
T.
Miller
, and
T.-C.
Chiang
,
Phys. Rev. Lett.
92
,
186803
(
2004
).
75.
J. J.
Paggel
,
T.
Miller
, and
T.-C.
Chiang
,
Phys. Rev. Lett.
83
,
1415
(
1999
).
76.
D.-A.
Luh
,
T.
Miller
,
J. J.
Paggel
, and
T.-C.
Chiang
,
Phys. Rev. Lett.
88
,
256802
(
2002
).
77.
B. A.
McDougall
,
T.
Balasubramaninan
, and
E.
Jensen
,
Phys. Rev. B
51
,
13891
(
1995
).
78.
M.
Hengsberger
,
D.
Purdie
,
P.
Segovia
,
M.
Garnier
, and
Y.
Baer
,
Phys. Rev. Lett.
83
,
592
(
1999
).
79.
I. G.
Hill
,
J.
Schwartz
, and
A.
Kahn
,
Org. Electron.
1
,
5
(
2000
).
80.
K.
Huang
and
A.
Rhys
,
Proc. R. Soc. London, Ser. A
204
,
406
(
1950
).
81.
C. B.
Duke
and
G. D.
Mahan
,
Phys. Rev.
139
,
A1965
(
1965
).
82.
P. M.
Petroff
and
G.
Medeiros-Ribeiro
,
MRS Bull.
21
,
50
(
1996
).
83.
Handbook of Mathematical Functions
, edited by
M.
Abramowitz
and
I.
Stegun
NBS Applied Mathematics Series
Vol.
55
(
US Government Printing Office
,
Washington, D.C.
,
1964
).
You do not currently have access to this content.