We use grand canonical transition-matrix Monte Carlo and discontinuous molecular dynamics simulations to generate precise thermodynamic and kinetic data for the equilibrium hard-sphere fluid confined between smooth hard walls. These simulations show that the pronounced inhomogeneous structuring of the fluid normal to the confining walls, often the primary focus of density functional theory studies, has a negligible effect on many of its average properties over a surprisingly broad range of conditions. We present one consequence of this insensitivity to confinement: a simple analytical equation relating the average density of the confined fluid to that of the bulk fluid with equal activity. Nontrivial implications of confinement for average fluid properties do emerge in this system, but only when the fluid is both (i) dense and (ii) confined to a gap smaller than approximately three particle diameters. For this limited set of conditions, we find that “in-phase” oscillatory deviations in excess entropy and self-diffusivity (relative to the behavior of the bulk fluid at the same average density) occur as a function of gap size. These paired thermodynamic/kinetic deviations from bulk behavior appear to reflect the geometric packing frustration that arises when the confined space cannot naturally accommodate an integer number of particle layers.

1.
H. T.
Davis
,
Statistical Mechanics of Phases, Interfaces, and Thin Films
(
VCH
,
New York
,
1996
).
2.
A.
Fortini
and
M.
Dijkstra
,
J. Phys.: Condens. Matter
18
,
L371
(
2006
).
3.
P. A.
Thompson
,
G. S.
Grest
, and
M. O.
Robbins
,
Phys. Rev. Lett.
68
,
3448
(
1992
).
4.
M.
Schmidt
and
H.
Löwen
,
Phys. Rev. Lett.
76
,
4552
(
1996
).
5.
R.
Zangi
and
S. A.
Rice
,
Phys. Rev. E
58
,
7529
(
1998
).
6.
M.
Schmidt
and
H.
Löwen
,
Phys. Rev. E
55
,
7228
(
1997
).
7.
J.
Mittal
,
J. R.
Errington
, and
T. M.
Truskett
,
Phys. Rev. Lett.
96
,
177804
(
2006
).
8.
9.
S.
Auer
and
D.
Frenkel
,
Phys. Rev. Lett.
91
,
015703
(
2003
).
10.
W. K.
Kegel
,
J. Chem. Phys.
115
,
6538
(
2001
).
11.
M.
Heni
and
H.
Löwen
,
Phys. Rev. E
60
,
7057
(
1999
).
12.
J. J.
Magda
,
M. V.
Tirrell
, and
H. T.
Davis
,
J. Chem. Phys.
83
,
1888
(
1985
).
13.
T. K.
Vanderlick
and
H. T.
Davis
,
J. Chem. Phys.
87
,
1791
(
1987
).
14.
J. R.
Errington
,
J. Chem. Phys.
118
,
9915
(
2003
).
15.
J. R.
Errington
,
Phys. Rev. E
67
,
012102
(
2003
).
16.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
, 2nd ed. (
Cambridge University Press
,
Cambridge
2004
).
17.

The activity is defined as ξ=exp(βμ)Λ3, where μ is the chemical potential and Λ is the de Broglie wavelength.

18.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
61
,
2635
(
1988
).
19.
A. Z.
Panagiotopoulos
,
J. Phys.: Condens. Matter
12
,
R25
(
2000
).
20.
J. R.
Errington
and
V. K.
Shen
,
J. Chem. Phys.
123
,
164103
(
2005
).
21.
J. R.
Henderson
and
F.
van Swol
,
Mol. Phys.
51
,
991
(
1984
).
22.
I. Z.
Fisher
,
Statistical Theory of Liquids
(
The University of Chicago Press
,
Chicago
1964
).
23.
J. R.
Errington
,
T. M.
Truskett
, and
J.
Mittal
,
J. Chem. Phys.
125
,
244502
(
2006
).
24.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
25.
J. R.
Henderson
,
J. Chem. Phys.
116
,
5039
(
2002
).
26.
P.
Bryk
,
R.
Roth
,
K. R.
Mecke
, and
S.
Dietrich
,
Phys. Rev. E
68
,
031602
(
2003
).
27.
D.
Henderson
and
M.
Plischke
,
Proc. R. Soc. London, Ser. A
400
,
163
(
1985
).
28.
S.
Torquato
,
T. M.
Truskett
, and
P. G.
Debenedetti
,
Phys. Rev. Lett.
84
,
2064
(
2000
).
29.
T. M.
Truskett
,
S.
Torquato
, and
P. G.
Debenedetti
,
Phys. Rev. E
62
,
993
(
2000
).
30.
R.
Kjellander
and
S.
Sarman
,
J. Chem. Soc., Faraday Trans.
87
,
1869
(
1991
).
31.
M.
Alcoutlabi
and
G. B.
McKenna
,
J. Phys.: Condens. Matter
17
,
R461
(
2005
).
32.
P.
Sollich
,
J. Phys.: Condens. Matter
14
,
R79
(
2002
).
You do not currently have access to this content.