Full configuration interaction (FCI) data are used to quantify the accuracy of approximate adiabatic connection (AC) forms in describing the ground state potential energy curve of H2, within spin-restricted density functional theory (DFT). For each internuclear separation R, accurate properties of the AC are determined from large basis set FCI calculations. The parameters in the approximate AC form are then determined so as to reproduce these FCI values exactly, yielding an exchange-correlation energy expressed entirely in terms of FCI-derived quantities. This is combined with other FCI-derived energy components to give the total electronic energy; comparison with the FCI energy quantifies the accuracy of the AC form. Initial calculations focus on a [11]-Padé-based form. The potential energy curve determined using the procedure is a notable improvement over those from existing DFT functionals. The accuracy near equilibrium is quantified by calculating the bond length and vibrational wave numbers; errors in the latter are below 0.5%. The molecule dissociates correctly, which can be traced to the use of virtual orbital eigenvalues in the slope in the noninteracting limit, capturing static correlation. At intermediate R, the potential energy curve exhibits an unphysical barrier, similar to that noted previously using the random phase approximation. Alternative forms of the AC are also considered, paying attention to size extensivity and the behavior in the strong-interaction limit; none provide an accurate potential energy curve for all R, although good accuracy can be achieved near equilibrium. The study demonstrates how data from correlated ab initio calculations can provide valuable information about AC forms and highlight areas where further theoretical progress is required.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
D. C.
Langreth
and
J. P.
Perdew
,
Solid State Commun.
17
,
1425
(
1975
).
4.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
5.
D. C.
Langreth
and
J. P.
Perdew
,
Phys. Rev. B
15
,
2884
(
1977
).
6.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
8.
D. P.
Joubert
and
G. P.
Srivastava
,
J. Chem. Phys.
109
,
5212
(
1998
).
9.
F.
Colonna
and
A.
Savin
,
J. Chem. Phys.
110
,
2828
(
1999
).
10.
D.
Frydel
,
W. M.
Terilla
, and
K.
Burke
,
J. Chem. Phys.
112
,
5292
(
2000
).
11.
A.
Görling
and
M.
Levy
,
Phys. Rev. B
47
,
13105
(
1993
).
12.
A.
Görling
and
M.
Levy
,
Phys. Rev. A
50
,
196
(
1994
).
13.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
14.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
15.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
16.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
17.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
18.
M.
Ernzerhof
,
Chem. Phys. Lett.
263
,
499
(
1996
).
19.
K.
Burke
,
M.
Ernzerhof
, and
J. P.
Perdew
,
Chem. Phys. Lett.
265
,
115
(
1997
).
20.
M.
Seidl
,
J. P.
Perdew
, and
S.
Kurth
,
Phys. Rev. Lett.
84
,
5070
(
2000
).
21.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
124
,
091102
(
2006
).
22.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
23.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
24.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
125
,
201102
(
2006
).
25.
A.
Ruzsinszky
,
J. P.
Perdew
,
G. I.
Csonka
,
O. A.
Vydrov
, and
G. E.
Scuseria
,
J. Chem. Phys.
126
,
104102
(
2007
).
26.
M.
Fuchs
,
Y.-M.
Niquet
,
X.
Gonze
, and
K.
Burke
,
J. Chem. Phys.
122
,
094116
(
2005
).
27.
R. D.
Amos
,
I. L.
Alberts
,
J. S.
Andrews
 et al, CADPAC6.5,
The Cambridge Analytic Derivatives Package
, Cambridge, England,
1998
.
28.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
, Jr.
, (unpublished).
29.
W.
Kołos
and
L.
Wolniewicz
,
J. Chem. Phys.
43
,
2429
(
1965
).
30.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
118
,
2498
(
2003
).
31.
M.
Levy
,
Proc. Natl. Acad. Sci. U.S.A.
76
,
6062
(
1979
).
33.
A. M.
Teale
,
A. J.
Cohen
, and
D. J.
Tozer
,
J. Chem. Phys.
126
,
074101
(
2007
).
34.
T.
Heaton-Burgess
,
F. A.
Bulat
, and
W.
Yang
, arXiv:cond-mat∕0610884.
35.
W.
Yang
and
Q.
Wu
,
Phys. Rev. Lett.
89
,
143002
(
2002
).
36.
E.
Fermi
and
E.
Amaldi
,
Accad. Ital. Rome
6
,
117
(
1934
).
37.
38.
P. R. T.
Schipper
,
O. V.
Gritsenko
, and
E. J.
Baerends
,
Theor. Chem. Acc.
98
,
16
(
1997
).
39.
C. J.
Umrigar
and
X.
Gonze
,
Phys. Rev. A
50
,
3827
(
1994
).
40.
M. A.
Buijse
,
E. J.
Baerends
, and
J. G.
Snijders
,
Phys. Rev. A
40
,
4190
(
1989
).
41.
C. F.
von Weizsäcker
,
Z. Phys.
96
,
431
(
1935
).
42.
K. P.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure: Constants of Diatomic Molecules
(
Van Nostrand
,
New York
,
1979
), Vol.
4
.
43.
E. W.
Kaiser
,
J. Chem. Phys.
53
,
1686
(
1970
).
44.
R. J.
Le Roy
, LEVEL 7.5,
A computer program for solving the radial schrödinger equation for bound and quasibound levels
,
2002
, see the “
Computer Programs
” link at http://leroy.uwaterloo.ca
45.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
46.
N. E.
Dahlen
,
R.
van Leeuwen
, and
U.
von Barth
,
Phys. Rev. A
73
,
012511
(
2006
).
47.
N. C.
Handy
(private communication).
48.
R. J.
Bartlett
and
G. D.
Purvis
,
Int. J. Quantum Chem.
14
,
561
(
1978
).
49.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley
,
New York
,
2000
).
50.
M.
Levy
and
J. P.
Perdew
,
Phys. Rev. A
32
,
2010
(
1985
).
51.
E. J.
Baerends
,
Phys. Rev. Lett.
87
,
133004
(
2001
).
52.
M.
Grüning
,
O. V.
Gritsenko
, and
E. J.
Baerends
,
J. Chem. Phys.
118
,
7183
(
2003
).
You do not currently have access to this content.