Free energy calculations were carried out for water addition coupled reduction of aqueous ruthenate, RuO4+H2O+e[RuO3(OH)2]2, using Car-Parrinello molecular dynamics simulations. The full reaction is divided into the reduction of the tetrahedral monoanion, RuO4+eRuO42, followed by water addition, RuO42+H2O[RuO3(OH)2]2. The free energy of reduction is computed from the fluctuations of the vertical energy gap using the MnO4+eMnO42 reaction as reference. The free energy for water addition is estimated using constrained molecular dynamics methods. While the description of this complex reaction, in principle, involves multiple reaction coordinates, we found that reversible transformation of the reactant into the product can be achieved by control of a single reaction coordinate consisting of a suitable linear combination of atomic distances. The free energy difference of the full reaction is computed to be 0.62eV relative to the normal hydrogen electrode. This is in good agreement with the experimental value of 0.59eV, lending further support to the hypothesis that, contrary to the ruthenate monoanion, the dianion is not tetrahedral but forms a trigonal-bipyramidal dihydroxo complex in aqueous solution. We construct an approximate two-dimensional free energy surface using the coupling parameter for reduction and the mechanical constraint for water addition as variables. Analyzing this surface we find that in the most favorable reaction pathway the reduction reaction precedes water addition. The latter takes place via the protonated complex [RuO3(OH)] and subsequent transport of the created hydroxide ion to the fifth coordination site of Ru.

1.
A.
Warshel
,
J. Phys. Chem.
86
,
2218
(
1982
).
2.
R. A.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
).
3.
R. A.
Marcus
,
J. Chem. Phys.
43
,
679
(
1965
).
4.
M.
Tachiya
,
J. Phys. Chem.
93
,
7050
(
1989
).
5.
G.
King
and
A.
Warshel
,
J. Chem. Phys.
93
,
8682
(
1990
).
6.
D. A.
Rose
and
I.
Benjamin
,
J. Chem. Phys.
100
,
3545
(
1994
).
7.
D. W.
Small
,
D. V.
Matyushov
, and
G. A.
Voth
,
J. Am. Chem. Soc.
125
,
7470
(
2003
).
8.
I.
Tavernelli
,
R.
Vuilleumier
, and
M.
Sprik
,
Phys. Rev. Lett.
88
,
213002
(
2002
).
9.
J.
Blumberger
,
L.
Bernasconi
,
I.
Tavernelli
,
R.
Vuilleumier
, and
M.
Sprik
,
J. Am. Chem. Soc.
126
,
3928
(
2004
).
10.
J.
Blumberger
and
M.
Sprik
,
J. Phys. Chem. B
108
,
6529
(
2004
).
11.
J.
Blumberger
and
M.
Sprik
,
J. Phys. Chem. B
109
,
6793
(
2005
).
12.
Y.
Tateyama
,
J.
Blumberger
,
M.
Sprik
, and
I.
Tavernelli
,
J. Chem. Phys.
122
,
234505
(
2005
).
13.
J.
Blumberger
,
Y.
Tateyama
, and
M.
Sprik
,
Comput. Phys. Commun.
169
,
256
(
2005
).
14.
R.
Ayala
and
M.
Sprik
,
J. Chem. Theory Comput.
2
,
1403
(
2006
).
15.
J.
Blumberger
,
I.
Tavernelli
,
M. L.
Klein
, and
M.
Sprik
,
J. Chem. Phys.
124
,
064507
(
2006
).
16.
P. H.-L.
Sit
,
M.
Cococcioni
, and
N.
Marzari
,
Phys. Rev. Lett.
97
,
028303
(
2006
).
17.
J.
VandeVondele
,
R.
Lynden-Bell
,
E. J.
Meijer
, and
M.
Sprik
,
J. Phys. Chem. B
110
,
3614
(
2006
).
18.
J.
VandeVondele
,
M.
Sulpizi
, and
M.
Sprik
,
Angew. Chem.
45
,
1936
(
2006
).
19.
E. A.
Carter
,
G.
Ciccotti
,
J. T.
Hynes
, and
R.
Kapral
,
Chem. Phys. Lett.
156
,
472
(
1989
).
20.
M.
Sprik
and
G.
Ciccotti
,
J. Chem. Phys.
109
,
7737
(
1998
).
21.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
12562
(
2002
).
22.
M.
Iannuzzi
,
A.
Laio
, and
M.
Parrinello
,
Phys. Rev. Lett.
90
,
238302
(
2003
).
23.
A.
Laio
,
A.
Rodriguez-Fortea
,
F. L.
Gervasio
,
M.
Ceccarelli
, and
M.
Parrinello
,
J. Phys. Chem. B
109
,
6714
(
2005
).
24.
A.
Sergi
,
G.
Ciccotti
,
M.
Falconi
,
A.
Desideri
, and
M.
Ferrario
,
J. Chem. Phys.
116
,
6329
(
2002
).
25.
I.
Coluzza
,
M.
Sprik
, and
G.
Ciccotti
,
Mol. Phys.
101
,
2885
(
2003
).
26.
J.
Villa
and
A.
Warshel
,
J. Phys. Chem. B
105
,
7887
(
2001
).
27.
C.
Carra
,
N.
Iordanova
, and
S.
Hammes-Schiffer
,
J. Am. Chem. Soc.
125
,
10429
(
2003
).
28.
E.
Hatcher
,
A. V.
Soudackov
, and
S.
Hammes-Schiffer
,
J. Am. Chem. Soc.
126
,
5763
(
2004
).
29.
A.
Calhoun
,
M. T. M.
Koper
, and
G. A.
Voth
,
J. Phys. Chem. B
103
,
3442
(
1999
).
30.
W. P.
Griffith
and
M.
Suriaatmaja
,
Can. J. Chem.
79
,
598
(
2001
).
31.
R. E.
Connick
and
C. R.
Hurley
,
J. Am. Chem. Soc.
74
,
5012
(
1952
).
32.
M. D.
Silverman
and
H. A.
Levy
,
J. Am. Chem. Soc.
76
,
3317
(
1954
).
33.
E. V.
Luoma
and
C. H.
Brubaker
, Jr.
,
Inorg. Chem.
5
,
1636
(
1966
).
34.
A.
Carrington
and
M. C. R.
Symons
,
J. Chem. Soc.
1956
,
3373
.
35.
P.
Eichner
,
Bull. Soc. Chim. Fr.
6
,
2051
(
1967
).
36.
Y.
Nakano
and
T. A.
Foglia
,
J. Am. Oil Chem. Soc.
59
,
163
(
1982
).
37.
A. J.
Bailey
,
W. P.
Griffith
,
S. I.
Mostafa
, and
P. A.
Sherwood
,
Inorg. Chem.
32
,
268
(
1993
).
38.
D.
Fischer
and
R.
Hoppe
,
Z. Anorg. Allg. Chem.
601
,
41
(
1991
).
39.
M. O.
Elout
,
G.
Haijie
, and
W. J. A.
Maaskant
,
Inorg. Chem.
27
,
610
(
1988
).
40.
G.
Nowogrocki
,
F.
Abrahams
,
J.
Tréhoux
, and
D.
Thomas
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
B32
,
2413
(
1976
).
41.
R. W.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
42.
J.
VandeVondele
,
R.
Ayala
,
M.
Suplizi
, and
M.
Sprik
,
J. Electroanal. Chem.
(in press).
43.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
44.
J.
Hutter
,
P.
Ballone
,
M.
Bernasconi
,
P.
Focher
,
E.
Fois
,
S.
Goedicker
,
D.
Marx
,
M.
Parrinello
, and
M.
Tuckerman
, CPMD, MPI für Festkörperforschung and the IBM Zurich Research Laboratory (see website www.cpmd.org).
45.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
46.
C.
Lee
,
W.
Yang
, and
R.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
47.
N.
Troullier
and
J.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
You do not currently have access to this content.