The K2392Σg+3 state has been observed by perturbation-facilitated infrared-infrared double resonance spectroscopy and two-photon excitation. Resolved fluorescence spectra into the aΣu+3 state have been recorded. The observed vibrational levels have been assigned as the v=2325, 27, 28, 31–33, 38–45, 47, and 53 levels by comparing the observed and calculated spectra of the 2Σg+3aΣu+3 transitions. Molecular constants have been obtained using a global fitting procedure with a comprehensive set of experimental data. Fine and hyperfine splittings have been resolved in the excitation spectra. Perturbations between the 2Σg+3 and 2Πg3 states were observed. The hyperfine patterns of the 2Σg+3 levels are strongly affected by the perturbation. The perturbation-free and weakly perturbed levels follow the case bβS coupling scheme, while the perturbed levels follow case bβJ coupling. A Fermi contact constant, bF=65±10MHz, has been obtained. Intensity anomalies of rotational lines appeared both in the 2Σg+32Πg3bΠu3 excitation spectra and in the 2Σg+32Πg3aΣu+3 resolved fluorescence spectra. These intensity anomalies can be explained in terms of a quantum-mechanical interference effect.

1.
L.
Li
and
R. W.
Field
,
J. Phys. Chem.
87
,
3020
(
1983
).
2.
L.
Li
and
R. W.
Field
, in
Molecular Spectroscopy and Dynamics by Stimulated Emission Pumping
, edited by
H. L.
Dai
and
R. W.
Field
(
World Scientific
,
Singapore
,
1995
), Chap. 7.
3.
L.
Li
and
A. M.
Lyyra
,
Spectrochim. Acta, Part A
55
,
2147
(
1999
), and references therein.
4.
J.
Huennekens
,
I.
Prodan
,
A.
Marks
,
L.
Sibbach
,
E.
Galle
,
T.
Morgus
, and
L.
Li
,
J. Chem. Phys.
113
,
7384
(
2000
), and the references therein.
5.
Y.
Chu
,
F.
Xie
,
D.
Li
,
L.
Li
,
V. B.
Sovkov
,
V. S.
Ivanov
, and
A. M.
Lyyra
,
J. Chem. Phys.
122
,
074302
(
2005
).
6.
F.
Xie
,
D.
Li
,
Y.
Chu
,
L.
Li
,
V. B.
Sovkov
,
V. S.
Ivanov
, and
S.
Magnier
,
J. Phys. Chem. A
110
,
11260
(
2006
).
7.
L.
Li
,
P.
Qi
,
A.
Lazoudis
,
E.
Ahmed
, and
A. M.
Lyyra
,
Chem. Phys. Lett.
403
,
262
(
2005
).
8.
S.
Magnier
,
M.
Aubert-Frecon
, and
A. R.
Allouche
,
J. Chem. Phys.
121
,
1771
(
2004
).
9.
X.
Xie
and
R. W.
Field
,
J. Mol. Spectrosc.
117
,
228
(
1986
).
10.
L.
Li
and
R. W.
Field
,
J. Mol. Spectrosc.
117
,
245
(
1986
).
11.
G.
Pichler
,
J. T.
Bahns
,
K.
Sando
,
W. C.
Stwalley
,
D. D.
Konowalow
,
L.
Li
,
R. W.
Field
, and
W.
Muller
,
Chem. Phys. Lett.
129
,
425
(
1986
).
12.
R. S.
Mulliken
,
J. Chem. Phys.
55
,
309
(
1971
).
13.
J.
Tellinghuisen
,
G.
Pichler
,
W. L.
Snow
,
M. E.
Hillard
, and
R. J.
Exton
,
Chem. Phys.
50
,
313
(
1980
).
14.
J. T.
Bahns
,
W. C.
Stwalley
, and
G.
Pichler
,
J. Chem. Phys.
90
,
2841
(
1989
).
15.
W.-T.
Luh
,
J. T.
Bahns
,
A. M.
Lyyra
,
K. M.
Sando
,
P. D.
Kleiber
, and
W. C.
Stwalley
,
J. Chem. Phys.
88
,
2235
(
1988
), and the references therein.
16.
C.
Radzewicz
,
P.
Kowalczyk
, and
J.
Krasinski
,
Z. Phys. A
314
,
293
(
1983
).
17.
H.
Lefebvre-Brion
and
R. W.
Field
,
The Spectra and Dynamics of Diatomic Molecules
(
Elsevier
,
New York
,
2004
).
18.
I.
Kovács
,
Rotational Structure in the Spectra of Diatomic Molecules
(
Hilger
,
London
,
1969
).
19.
L.
Li
,
A.
Lazoudis
,
P.
Yi
,
Y.
Liu
,
J.
Huennekens
,
R. W.
Field
, and
A. M.
Lyyra
,
J. Chem. Phys.
116
,
10704
(
2002
), and references therein.
20.
Y.
Liu
,
L.
Li
,
G.
Lazarov
,
A.
Lazoudis
,
A. M.
Lyyra
, and
R. W.
Field
,
J. Chem. Phys.
121
,
5821
(
2004
).
21.
P.
Burns
,
A. D.
Wilkins
,
A. P.
Hickman
, and
J.
Huennekens
,
J. Chem. Phys.
122
,
074306
(
2005
).
22.
G.
Lazarov
,
A. M.
Lyyra
,
L.
Li
, and
J.
Huennekens
,
J. Mol. Spectrosc.
196
,
259
(
1999
).
23.
L.
Tterlikkis
,
S. D.
Mahanti
, and
T. P.
Das
,
Phys. Rev.
176
,
10
(
1968
).
24.
C.
Lisdat
,
H.
Knockel
, and
E.
Tiemann
,
J. Mol. Spectrosc.
199
,
81
(
2000
).
25.
L.
Li
,
A. M.
Lyyra
,
W. T.
Luh
, and
W. C.
Stwalley
,
J. Chem. Phys.
93
,
8452
(
1990
).
26.
J.
Kim
,
H.
Wang
,
C.
Tsai
,
J.
Bahns
,
W.
Stwalley
,
G.
Jong
, and
A. M.
Lyyra
,
J. Chem. Phys.
102
,
6646
(
1995
).
27.
J.
Magnes
,
E.
Ahmed
,
T.
Kirova
,
C.
Goldberg
,
A. M.
Lyyra
,
S.
Magnier
,
Y.
Liu
, and
L.
Li
,
J. Mol. Spectrosc.
221
,
72
(
2003
).
28.
E.
Ahmed
,
A. M.
Lyyra
,
F.
Xie
,
D.
Li
,
Y.
Chu
,
L.
Li
,
V. S.
Ivanov
,
V. B.
Sovkov
, and
S.
Magnier
,
J. Mol. Spectrosc.
234
,
41
(
2005
).
29.
The 11539.361cm1 two-photon transition was first observed with Ti:sapphire laser (Coherent model 899-29) excitation with the laser frequency calibrated using a uranium hollow cathode lamp. In the experiment with diode lasers, the laser frequencies were measured using Burleigh WA-1600 wavemeters, which have a specified accuracy of 0.003cm1. The two-photon transition frequency was measured by a WA-1600 wavemeter to be 11539.365cm1. 11539.365cm1 is also the central frequency of the bΠ0u3v=19, J=68XΣg+1v=0, J=69 transition according to Refs. 32–34.
30.
See EPAPS Document No. E-JCPSA6-126-027717 for the PFOODR excitation data. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
31.
V. B.
Sovkov
,
V. S.
Ivanov
,
D.
Li
,
F.
Xie
,
L.
Li
,
Opt. Spectrosc.
(to be published).
32.
C.
Amiot
,
J.
Verges
, and
C. E.
Fellows
,
J. Chem. Phys.
103
,
3350
(
1995
).
33.
M. R.
Manaa
,
A. J.
Ross
,
F.
Martin
,
P.
Crozet
,
A. M.
Lyyra
,
L.
Li
,
C.
Amiot
, and
T.
Bergeman
,
J. Chem. Phys.
117
,
11208
(
2002
).
34.
C.
Amiot
,
J. Mol. Spectrosc.
147
,
370
(
1991
).

Supplementary Material

You do not currently have access to this content.