The normal interaction and the behavior under shear of mica surfaces covered by two different triblock copolymers of polylysine-polydimethysiloxane-polylysine were studied by combining the capabilities of the surface forces apparatus and the atomic force microscopy. At low pH values these copolymers spontaneously adsorb on the negatively charged mica surfaces from aqueous solutions as a consequence of the positive charge of the polylysine moieties. The morphology of the adsorbed layer is determined by the molecular structure of the particular copolymer investigated. This morphology plays a fundamental role on the behavior of the adsorbed layers under shear and compression. While nonadhesive smooth layers oppose an extremely small resistance to sliding, the presence of asperities even at the nanometric scale originates a frictional resistance to the motion. The behavior of uniform nonadhesive nanorough surfaces under shear can be quantitatively understood in terms of a simple multistable thermally activated junction model. The electric charge of the adsorbed copolymer molecules and hence the adhesion energy between the coated surfaces can be modified by varying the pH of the surrounding media. In the presence of an adhesive interaction between the surfaces the behavior under shear is strongly modified. Time-dependent mechanisms of energy dissipation have to be evoked in order to explain the changes observed.

1.
F. P.
Bowden
and
D.
Tabor
,
The Friction and Lubrication of Solids
(
Clarendon
,
London
,
1950
).
2.
J. A.
Greenwood
and
J. B. P.
Williamson
,
Proc. R. Soc. London, Ser. A
295
,
300
(
1966
).
3.
B. N. J.
Persson
,
Sliding Friction: Physical Principles and Applications
(
Springer
,
Heidelberg
,
1998
).
4.
B. N. J.
Persson
,
O.
Albohr
,
U.
Tartaglino
,
A. I.
Volokitin
, and
E.
Tosatti
,
J. Phys.: Condens. Matter
17
,
R1
(
2005
).
5.
T.
Baumberger
and
C.
Caroli
,
Adv. Phys.
55
,
279
(
2006
).
6.
K. L.
Johnson
,
Contact Mechanics
(
Cambridge University Press
,
Cambridge
,
1985
).
7.
J. M.
Scholtz
and
R. L.
Baldwin
,
Annu. Rev. Biophys. Biomol. Struct.
21
,
95
(
1992
).
8.
J.
Babin
,
J.
Rodriguez-Hernandez
,
S.
Lecommandoux
,
H.-A.
Klok
, and
M.-F.
Achard
,
Faraday Discuss.
128
,
179
(
2005
).
9.
G. G.
Warr
,
Curr. Opin. Colloid Interface Sci.
5
,
88
(
2000
).
10.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 2nd ed. (
Academic
,
New York
,
1991
).
11.
T.
Kumaki
,
M.
Sisido
, and
Y.
Imanishi
,
J. Biomed. Mater. Res.
19
,
785
(
1985
).
12.
S.
Manne
,
J. P.
Cleveland
,
H. E.
Gaub
,
G. D.
Stucky
, and
P. K.
Hansma
,
Langmuir
10
,
4409
(
1994
).
13.
J. N.
Israelachvili
and
G. E.
Adams
,
J. Chem. Soc., Faraday Trans. 1
74
,
975
(
1978
).
14.
J. N.
Israelachvili
,
J. Colloid Interface Sci.
44
,
259
(
1973
).
15.
G.
Luengo
,
F. J.
Schmitt
,
R.
Hill
, and
J.
Israelachvili
,
Macromolecules
30
,
2482
(
1997
).
16.
A. M.
Homola
,
J. N.
Israelachvili
,
M. L.
Gee
, and
P. M.
McGuiggan
,
J. Tribol.
111
,
675
(
1989
).
17.
C. A.
Helm
,
J.
Israelachvili
, and
P.
McGuiggan
,
Biochemistry
31
,
1794
(
1992
).
18.
P.
Richetti
,
C.
Drummond
,
J.
Israelachvili
,
M.
In
, and
R.
Zana
,
Europhys. Lett.
55
,
653
(
2001
).
19.
C.
Drummond
,
J.
Israelachvili
, and
P.
Richetti
,
Phys. Rev. E
67
,
066110
(
2003
).
20.
H.
Yoshizawa
and
J.
Israelachvili
,
J. Phys. Chem.
97
,
11300
(
1993
).
22.
U.
Raviv
,
S.
Giasson
,
N.
Kampf
,
J.-F.
Gohy
,
R.
Jerôme
, and
J.
Klein
,
Nature (London)
425
,
163
(
2003
).
23.
J.
Marra
and
M. L.
Hair
,
J. Phys. Chem.
92
,
6044
(
1988
).
24.
P. M.
Claesson
and
B. W.
Ninham
,
Langmuir
8
,
1406
(
1992
).
25.
T.
Abraham
,
S.
Giasson
,
J. F.
Gohy
, and
R.
Jérôme
,
Langmuir
16
,
4286
(
2000
).
26.
G.
Maurdev
,
L.
Meagher
,
J.
Ennis
, and
M. L.
Gee
,
Macromolecules
34
,
4151
(
2001
).
27.
E.
Poptoshev
and
P. M.
Claesson
,
Langmuir
18
,
2590
(
2002
).
28.
B. J.
Briscoe
and
D. C. B.
Evans
,
Proc. R. Soc. London, Ser. A
380
,
389
(
1982
).
29.
T.
Bouhacina
,
J. P.
Aimé
,
S.
Gauthier
,
D.
Michel
, and
V.
Heroguez
,
Phys. Rev. B
56
,
7694
(
1997
).
30.
E.
Gnecco
,
R.
Bennewitz
,
T.
Gyalog
,
Ch.
Loppacher
,
M.
Bammerlin
,
E.
Meyer
, and
H.-J.
Güntherodt
,
Phys. Rev. Lett.
84
,
1172
(
2000
).
31.
M.
He
,
A.
Szuchmacher Blum
,
G.
Overney
, and
R. M.
Overney
,
Phys. Rev. Lett.
88
,
154302
(
2002
).
32.
J. N.
Glosli
and
G. M.
McClelland
,
Phys. Rev. Lett.
70
,
1960
(
1993
).
33.
G.
He
and
M. O.
Robbins
,
Tribol. Lett.
10
,
1
(
2001
).
34.
M.
Nakatani
,
J. Geophys. Res.
106
,
13347
(
2001
).
35.
T.
Baumberger
,
P.
Berthoud
, and
C.
Caroli
,
Phys. Rev. B
60
,
3928
(
1999
).
36.
H.
Eyring
,
J. Chem. Phys.
4
,
283
(
1936
).
37.
C.
Caroli
and
P.
Nozières
, in
Physics of Sliding Friction
,
NATO Advanced Studies Institute Series E Applied Sciences
Vol.
311
, edited by
B. N. J.
Persson
and
E.
Tosatti
, (
Kluwer
,
Dordrecht
,
1996
).
38.
Y.
Sang
,
M.
Dubé
, and
M.
Grant
,
Phys. Rev. Lett.
87
,
174301
(
2001
).
39.
O. K.
Dudko
,
A. E.
Filippov
,
J.
Klafter
, and
M.
Urbakh
,
Chem. Phys. Lett.
352
,
499
(
2002
).
40.
B. N. J.
Persson
,
O.
Albohr
,
F.
Mancosu
,
V.
Peveri
,
V. N.
Samoilov
, and
I. M.
Sivebaek
,
Wear
254
,
835
(
2003
).
41.
E.
Riedo
,
E.
Gnecco
,
R.
Bennewitz
,
E.
Meyer
, and
H.
Brune
,
Phys. Rev. Lett.
91
,
084502
(
2003
).
42.
Y. B.
Chernyak
and
A. I.
Leonov
,
Wear
108
,
105
(
1986
).
You do not currently have access to this content.