The isothermal crystallization process of thin amorphous solid water (ASW) films on Ru(0001) has been investigated in real time by simultaneously employing helium atom scattering, infrared reflection absorption spectroscopy, and isothermal temperature-programmed desorption. The measurements reveal that the crystallization mechanism consists of random nucleation events in the bulk of the ASW films, followed by homogeneous growth. Morphological changes of the solid water film during crystallization expose the water monolayer just above the substrate to the vacuum during the crystallization process.

1.
E. F.
van Dishoeck
,
Annu. Rev. Astron. Astrophys.
42
,
119
(
2004
).
2.
P.
Ehrenfreund
,
H. J.
Fraser
,
J.
Blum
,
J. H. E.
Cartwright
,
J. M.
Garcia-Ruiz
,
E.
Hadamcik
,
A. C.
Levasseur-Regourd
,
S.
Price
,
F.
Prodi
, and
A.
Sarkissian
,
Planet. Space Sci.
51
,
473
(
2003
).
3.
P.
Ehrenfreund
,
W.
Irvine
,
L.
Becker
 et al,
Rep. Prog. Phys.
65
,
1427
(
2002
).
4.
J. P. D.
Abbatt
,
Chem. Rev. (Washington, D.C.)
103
,
4783
(
2003
).
5.
R. S.
Smith
,
C.
Huang
,
E. K. L.
Wong
, and
B. D.
Kay
,
Surf. Sci.
367
,
L13
(
1996
).
6.
P.
Löfgren
,
P.
Ahlström
,
D. V.
Chakarov
,
J.
Lausmaa
, and
B.
Kasemo
,
Surf. Sci.
367
,
L19
(
1996
).
7.
P.
Löfgren
,
P.
Ahlström
,
J.
Lausma
,
B.
Kasemo
, and
D.
Chakarov
,
Langmuir
19
,
265
(
2003
).
8.
P.
Ahlström
,
P.
Löfgren
,
J.
Lausma
,
B.
Kasemo
, and
D.
Chakarov
,
Phys. Chem. Chem. Phys.
6
,
1890
(
2004
).
9.
G.
Zimbitas
,
S.
Haq
, and
A.
Hodgson
,
J. Chem. Phys.
123
,
174701
(
2005
).
10.
G. A.
Kimmel
,
N. G.
Petrik
,
Z.
Dohnálek
, and
B. D.
Kay
,
Phys. Rev. Lett.
95
,
166102
(
2005
).
11.
A. S.
Bolina
,
A. J.
Wolff
, and
W. A.
Brown
,
J. Phys. Chem. B
109
,
16836
(
2005
).
12.
Z.
Dohnálek
,
R. L.
Ciolli
,
G. A.
Kimmel
,
K. P.
Stevenson
,
R. S.
Smith
, and
B. D.
Kay
,
J. Chem. Phys.
110
,
5489
(
1999
).
13.
Z.
Dohnálek
,
G. A.
Kimmel
,
R. L.
Ciolli
,
K. P.
Stevenson
,
R. S.
Smith
, and
B. D.
Kay
,
J. Chem. Phys.
112
,
5932
(
2000
).
14.
D. J.
Safarik
,
R. J.
Meyer
, and
C. B.
Mullins
,
J. Chem. Phys.
118
,
4660
(
2003
).
15.
D. J.
Safarik
and
C. B.
Mullins
,
J. Chem. Phys.
121
,
6003
(
2004
).
16.
E. H. G.
Backus
,
M.
Grecea
,
A. W.
Kleyn
, and
M.
Bonn
,
Phys. Rev. Lett.
92
,
236101
(
2004
).
17.
R. S.
Smith
,
Z.
Dohnálek
,
G. A.
Kimmel
,
G.
Teeter
,
P.
Ayotte
,
J. L.
Daschbach
, and
B. D.
Kay
, in
Water in Confining Geometries
, edited by
V.
Buch
and
J. P.
Devlin
(
Springer-Verlag
,
Berlin
,
2003
), pp.
337
357
.
18.
R.
Souda
,
J. Phys. Chem. B
110
,
14787
(
2006
).
19.
R.
Souda
,
J. Phys. Chem. B
110
,
17524
(
2006
).
20.
P. A.
Thiel
and
T. E.
Madey
,
Surf. Sci. Rep.
7
,
211
(
1987
).
21.
M. A.
Henderson
,
Surf. Sci. Rep.
46
,
1
(
2002
).
22.
T.
Kondo
,
H. S.
Kato
,
T.
Yamada
,
S.
Yamamoto
, and
M.
Kawai
,
Eur. Phys. J. D
38
,
129
(
2006
).
23.

The thickness of the water layer is expressed in monolayers (ML). 1 ML is defined as the amount of water adsorbed on the Ru(0001) surface that in a thermal desorption experiment gives rise to one desorption feature near 180K (Ref. 24); this feature saturates with exposure, after which multilayer desorption occurs near 160K.

24.
T.
Kondo
,
S.
Mae
,
H. S.
Kato
, and
M.
Kawai
,
Surf. Sci.
600
,
3570
(
2006
).
25.
W.
Hagen
,
A. G. G. M.
Tielens
, and
J. M.
Greenberg
,
Chem. Phys.
56
,
367
(
1981
).
26.
J. P.
Devlin
,
J. Geophys. Res.
106
,
33333
(
2001
).
27.
M. J.
Avrami
,
J. Chem. Phys.
7
,
1103
(
1939
);
M. J.
Avrami
,
J. Chem. Phys.
8
,
212
(
1940
);
M. J.
Avrami
,
J. Chem. Phys.
9
,
177
(
1941
).
28.
R. H.
Doremus
,
Rates of Phase Transformations
(
Academic
,
New York
,
1985
).
29.
E. H. G.
Backus
and
M.
Bonn
,
J. Chem. Phys.
121
,
1038
(
2004
).
30.

An Arrhenius plot prepared from the temperature dependence of the bulk nucleation rate and the growth rate, derived from the fitting analysis, yields activation energies of Enucleation=1556meV and Egrowth=438meV. Both values are in reasonable agreement with the values reported in the ASW crystallization on Pt(111) (Ref. 13) and on Ir(111) (Ref. 15). Our derived activation energies, however, may be only one of several possible combinations of fitting parameters (Ref. 14). For an exact determination, one of the parameters should be set using one of the experimental or theoretical methods such as the method described by Safarik and Mullins for the analysis of surface crystallization of ASW (Ref. 15).

31.

In the case of Fig. 1(a), the moment when crystallization is complete (3900s) is impossible to determine from the HAS signal, although ITPD and IRAS show significant changes of the surface and bulk phase states, respectively. These changes probably originate from the smaller contribution of the scattering intensity from the CI domain than from the first water layer in the HAS intensity components, though the precise origin is still unclear.

32.
N. S.
Faradzhev
,
K. L.
Kostov
,
P.
Feulner
,
T. E.
Madey
, and
D.
Menzel
,
Surf. Sci.
415
,
165
(
2005
).
33.
M. M.
Thiam
,
T.
Kondo
,
N.
Horimoto
,
H. S.
Kato
, and
M.
Kawai
,
J. Phys. Chem. B
109
,
16024
(
2005
).
You do not currently have access to this content.