In situ Raman spectra of transformations of H2O as functions of pressure and temperature have been measured starting from high-density amorphous ice (HDA). Changes above Tx, the crystallization temperature of HDA, were observed. The spectra provide evidence for an abrupt, first-order-like, structural change that appears to be distinct from those associated with the transformation between low-density amorphous ice (LDA) and HDA. In separate experiments, in situ Raman spectra of ice XII transformed from HDA have been measured at various P-T regions, in order to improve the understanding of the stability limits of ice XII. The spectra of ices VI and XII differ in shape, but the vibrational frequencies are very close in the same P-T regimes. A metastable phase of ice found to form within the stability field of ice VI appears to be distinct from ice XII.

1.
R. J.
Hemley
,
L. C.
Chen
, and
H. K.
Mao
,
Nature (London)
338
,
638
(
1989
).
2.
C.
Lobban
,
J. L.
Finney
, and
W. F.
Kuhs
,
Nature (London)
391
,
268
(
1998
).
3.
M.
O’Keeffe
,
Nature (London)
392
,
879
(
1998
).
4.
T.
Loerting
,
C.
Salzmann
,
I.
Kohl
,
E.
Mayer
, and
A.
Hallbrucker
,
Phys. Chem. Chem. Phys.
3
,
5355
(
2001
).
5.
Y.
Yoshimura
,
S. T.
Stewart
,
M.
Somayazulu
,
H. K.
Mao
, and
R. J.
Hemley
,
J. Chem. Phys.
124
,
024502
(
2006
).
6.
C. G.
Salzmann
,
P. G.
Radaelli
,
A.
Hallbrucker
,
E.
Mayer
, and
J. L.
Finney
,
Science
311
,
1758
(
2006
).
7.
T.
Loerting
,
W.
Schustereder
,
K.
Winkel
,
C. G.
Salzmann
,
I.
Kohl
, and
E.
Mayer
,
Phys. Rev. Lett.
96
,
25702
(
2006
);
T.
Loerting
,
C. G.
Salzmann
,
K.
Winkel
, and
E.
Mayer
,
Phys. Chem. Chem. Phys.
8
,
2810
(
2006
).
[PubMed]
8.
O.
Mishima
and
H. E.
Stanley
,
Nature (London)
396
,
329
(
1998
).
9.
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
,
Nature (London)
360
,
324
(
1992
).
10.
C. A.
Angell
, in
Water: A Comprehensive Treatise
, edited by
F.
Franks
(
Plenum
,
New York
,
1982
), Vol.
7
.
11.
O.
Mishima
,
J. Chem. Phys.
121
,
3161
(
2004
).
12.
A.
Hallbrucker
,
E.
Mayer
, and
G. P.
Johari
,
J. Phys. Chem.
93
,
7751
(
1989
).
13.
G. P.
Johari
,
A.
Hallbrucker
, and
E.
Mayer
,
J. Phys. Chem.
94
,
1212
(
1990
).
14.
H.
Kanno
and
C. A.
Angell
,
J. Chem. Phys.
73
,
1940
(
1980
).
15.
O.
Mishima
,
J. Chem. Phys.
100
,
5910
(
1994
).
16.
Y.
Katayama
,
T.
Mizutani
,
W.
Utsumi
,
O.
Shimomura
,
M.
Yamakata
, and
K.
Funakoshi
,
Nature (London)
403
,
170
(
2000
).
17.
O.
Ohtaka
,
H.
Arima
,
H.
Fukui
,
W.
Utsumi
,
Y.
Katayama
, and
A.
Yoshiasa
,
Phys. Rev. Lett.
92
,
15506
(
2004
).
18.
M.
Koza
,
S.
Helmut
,
A.
Tolle
,
F.
Fujara
, and
T.
Hansen
,
Nature (London)
397
,
660
(
2000
).
19.
M. M.
Koza
,
H.
Schober
,
T.
Hansen
,
A.
Tolle
, and
F.
Fujara
,
Phys. Rev. Lett.
84
,
4112
(
2000
).
20.
C. G.
Salzmann
,
T.
Loerting
,
I.
Kohl
,
E.
Mayer
, and
A.
Hallbrucker
,
J. Phys. Chem. B
106
,
5587
(
2002
).
21.
I.
Kohl
,
E.
Mayer
, and
A.
Hallbrucker
,
Phys. Chem. Chem. Phys.
3
,
602
(
2001
).
22.
C. A.
Tulk
and
D. D.
Klug
,
Phys. Rev. B
63
,
212201
(
2001
).
23.
I.
Kohl
,
E.
Mayer
, and
A.
Hallbrucker
,
J. Phys. Chem. B
104
,
12102
(
2000
).
24.
I.-M.
Chou
,
J. G.
Blank
,
A. F.
Goncharov
,
H.-K.
Mao
, and
R. J.
Hemley
,
Science
281
,
809
(
1998
).
25.
C. G.
Salzmann
,
I.
Kohl
,
T.
Loerting
,
E.
Mayer
, and
A.
Hallbrucker
,
J. Phys. Chem. B
106
,
1
(
2002
).
26.
T.
Loerting
,
I.
Kohl
,
C.
Salzmann
,
E.
Mayer
, and
A.
Hallbrucker
,
J. Chem. Phys.
116
,
3171
(
2002
).
27.
J. C.
Chervin
,
B.
Canny
,
M.
Guthier
, and
Ph.
Pruzan
,
Rev. Sci. Instrum.
64
,
203
(
1993
).
28.
H. K.
Mao
,
P. M.
Bell
,
J. W.
Shaner
, and
D. J.
Steinberg
,
J. Appl. Phys.
49
,
3276
(
1978
);
H. K.
Mao
,
J.
Xu
, and
P. M.
Bell
,
J. Geophys. Res.
91
,
4673
(
1986
).
29.
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
,
Nature (London)
310
,
393
(
1984
).
30.
G. E.
Walrafen
,
W.-H.
Yang
, and
Y.
Chu
, in
Supercooled Liquids: Advances and Novel Applications
, edited by
J. T.
Fourkas
,
D.
Kivelson
,
U.
Mohanty
, and
K. A.
Nelson
(
ACS
,
Washington, DC
,
1997
), Chap. 21.
31.
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
,
Nature (London)
314
,
76
(
1985
).
32.
O.
Andersson
,
G. P.
Johari
, and
H.
Suga
,
J. Chem. Phys.
120
,
9612
(
2004
).
33.
Y.
Yoshimura
and
H.
Kanno
,
Chem. Phys. Lett.
349
,
51
(
2001
).
34.
S.
Klotz
,
G.
Hamel
,
J. S.
Loveday
,
R. J.
Nelmes
, and
M.
Guthrie
,
Z. Kristallogr.
218
,
117
(
2003
).
35.
C. G.
Salzmann
,
E.
Mayer
, and
A.
Hallbrucker
,
Phys. Chem. Chem. Phys.
6
,
5156
(
2004
).
36.
J. L.
Finney
,
D. T.
Brown
,
A. K.
Soper
,
T.
Loerting
,
E.
Mayer
, and
A.
Hallbrucker
,
Phys. Rev. Lett.
89
,
205503
(
2002
).
37.
Y.
Yoshimura
,
H. K.
Mao
, and
R. J.
Hemley
,
Chem. Phys. Lett.
420
,
503
(
2006
).
38.
G. P.
Johari
,
J. Chem. Phys.
118
,
242
(
2003
).
39.
Y.
Yoshimura
,
S. T.
Stewart
,
M.
Somayazulu
,
H. K.
Mao
, and
R. J.
Hemley
(unpublished).
40.
B.
Kamb
,
Science
150
,
205
(
1965
).
41.
W. F.
Kuhs
,
J. L.
Finney
,
C.
Vettier
, and
D. V.
Bliss
,
J. Chem. Phys.
81
,
3612
(
1984
).
42.
C. A.
Tulk
,
C. J.
Benmore
,
J.
Urquidi
,
D. D.
Klug
,
J.
Neuefeind
,
B.
Tombeli
, and
P. A.
Egelstaff
,
Science
297
,
1320
(
2002
).
43.
O.
Mishima
and
Y.
Suzuki
,
Nature (London)
419
,
599
(
2002
).
44.
O.
Anderson
and
G. P.
Johari
,
J. Chem. Phys.
121
,
3936
(
2004
).
45.
L.
Bosio
,
G. P.
Johari
, and
J.
Teixeira
,
Phys. Rev. Lett.
56
,
460
(
1986
).
46.
M. A.
Floriano
,
E.
Whalley
,
E. C.
Svensson
, and
V. F.
Sears
,
Phys. Rev. Lett.
57
,
3062
(
1986
).
47.
M.-C.
Bellissent-Funel
and
J.
Teixeira
,
J. Chem. Phys.
87
,
2231
(
1987
).
48.
J. S.
Tse
,
D. D.
Klug
,
C. A.
Tulk
,
I.
Swainson
,
E. C.
Svenson
,
C.-K.
Loong
,
V.
Shapakov
,
V. R.
Belosludov
,
R. V.
Beloslufov
, and
Y.
Kawazoe
,
Nature (London)
400
,
647
(
1999
).
49.
J. S.
Tse
,
J. Chem. Phys.
96
,
5482
(
1992
).
50.
V.
Velikov
,
S.
Borick
, and
C. A.
Angell
,
Science
294
,
2335
(
2001
).
51.
M. M.
Koza
,
G.
Geil
,
H.
Schober
, and
F.
Natali
,
Phys. Chem. Chem. Phys.
7
,
1423
(
2005
).
52.
G. P.
Johari
,
J. Chem. Phys.
22
,
36101
(
2005
).
53.
R. J.
Hemley
, The H2O system under extreme conditions, 2nd International Workshop on Water Dynamics (Sendai International Center, Tohoku University, Sendai, Japan, November 11–12,
2004
).
54.
G. P.
Johari
,
J. Phys. Chem. B
102
,
4711
(
1998
).
55.
A.
Minoguchi
,
R.
Richert
, and
C. A.
Angell
,
Phys. Rev. Lett.
93
,
215703
(
2004
).
56.
S.
Cerveny
,
A. S.
Gustavo
,
R.
Bergman
, and
J.
Swenson
,
Phys. Rev. Lett.
93
,
245702
(
2004
).
57.
R.
Souda
,
Phys. Rev. Lett.
93
,
235502
(
2004
).
58.
G. P.
Johari
,
J. Phys. Chem. B
107
,
9063
(
2003
).
59.
O.
Mishima
and
H. E.
Stanley
,
Nature (London)
392
,
164
(
1998
).
60.
H.
Kanno
and
K.
Miyata
,
Chem. Phys. Lett.
422
,
507
(
2006
).
61.
M.
Canpolat
,
F. W.
Star
,
A.
Scala
,
M. R.
Sadr-Lahijany
,
O.
Mishima
,
S.
Havlin
, and
H. E.
Stanley
,
Chem. Phys. Lett.
294
,
9
(
1998
).
62.
T.
Kawamoto
,
S.
Ochiai
, and
H.
Kagi
,
J. Chem. Phys.
120
,
5867
(
2004
).
63.
C. G.
Salzmann
,
I.
Kohl
,
T.
Loerting
,
E.
Mayer
, and
A.
Hallbrucker
,
Phys. Chem. Chem. Phys.
6
,
1269
(
2004
).
64.
S.
Klotz
,
G.
Hamel
,
J. S.
Loveday
,
M.
Guthrie
, and
R. J.
Nelmes
, ISIS Rutherford Appleton Laboratory Report No. 11642,
2000
2001
(unpublished);
You do not currently have access to this content.