The application of a modified Simon-Glatzel-type relation [Z. Anorg. Allg. Chem.178, 309 (1929)] for the pressure evolution of the glass temperature is presented, namely, Tg(P)=Tg0[1+ΔP(π+Pg0)]1bexp[(ΔPc)], where (Tg0,Pg0) are the reference temperature and pressure, ΔP=PPg0, π is the negative pressure asymptote, b is the power exponent, and c is the damping pressure coefficient. The discussion is based on the experimental Tg(P) data for magmatic silicate melt albite, polymeric liquid crystal P8, and glycerol. The latter data are taken from Cook et al. [J. Chem. Phys.100, 5178 (1994)] and from the authors’ dielectric relaxation time (τ(P)) measurements, which employs the novel pressure counterpart of the Vogel-Fulcher-Tammann equation: τ(P)=τ0Pexp[DPΔP(P0P)], where ΔP=PPSL (PSL is the stability limit hidden under negative pressure), P0 is the estimation of the ideal glass pressure, and DP is the isothermal fragility strength coefficient. Results obtained suggest the hypothetical maximum of the Tg(P) curve, which can be estimated due to the application of the supporting derivative-based analysis. A hypothetical common description of glass formers characterized by dTgdP>0 and dTgdP<0 coefficients is suggested. Finally, the hypothetical link between molecular and colloidal glass formers is recalled.

1.
E.
Donth
,
The Glass Transition: Relaxation Dynamics in Liquids and Disordered Material
,
Springer Series in Materials Science II
(
Springer
,
Berlin
,
1998
), Vol.
48
.
3.
C. M.
Roland
,
S.
Hensel-Bielowka
,
M.
Paluch
, and
R.
Casalini
,
Rep. Prog. Phys.
68
,
1405
(
2005
).
4.
Soft Matter Under Exogenic Impacts
,
NATO Sci. Series II
, edited by
S. J.
Rzoska
and
V.
Mazur
(
Springer
,
Berlin
,
2006
), Vol.
247
.
5.
M.
Paluch
,
S. J.
Rzoska
,
P.
Habdas
, and
J.
Ziolo
,
J. Phys.: Condens. Matter
10
,
4131
(
1998
).
6.
M.
Paluch
,
J.
Gapiński
, and
A.
Patkowski
,
J. Chem. Phys.
114
,
8048
(
2001
).
7.
S.
Pawlus
,
M.
Paluch
,
M.
Sekula
,
J. L.
Ngai
,
S. J.
Rzoska
, and
J.
Ziolo
,
Phys. Rev. E
68
,
021503
(
2003
).
8.
A.
Drozd-Rzoska
and
S. J.
Rzoska
,
Phys. Rev. E
73
,
041502
(
2006
).
9.
A.
Drozd-Rzoska
,
Phys. Rev. E
72
,
041505
(
2006
).
10.
S. P.
Andersson
and
O.
Andersson
,
Macromolecules
31
,
2999
(
1998
).
11.
A.
Gitsas
,
G.
Floudas
, and
G.
Wegner
,
Phys. Rev. E
69
,
041802
(
2004
).
12.
R.
Casalini
and
C. M.
Roland
,
Phys. Rev. E
69
,
062501
(
2004
).
13.
R.
Casalini
and
C. M.
Roland
,
Phys. Rev. Lett.
92
,
245702
(
2004
).
14.
S.
Corezzi
,
M.
Beiner
,
H.
Huth
,
K.
Schoeber
,
S.
Capaccioli
,
R.
Casalini
,
D.
Fioretto
, and
E.
Donth
,
J. Chem. Phys.
117
,
2435
(
2002
).
15.
Th. M.
Nieuwenhuizen
,
Phys. Rev. Lett.
79
,
1317
(
1997
).
16.
V. P.
Skripov
and
M. Z.
Faizulin
,
Crystal-Liquid-Gas Phase Transitions and Thermodynamic Stability
(
Wiley-VCH
,
Weinheim
,
2006
).
17.
T.
Grande
,
S.
Stolen
,
A.
Grzechnik
,
W. A.
Crichton
, and
M.
Mezouard
,
Physica A
314
,
560
(
2002
).
18.
P. F.
McMillan
,
High Press. Res.
23
,
7
(
2003
).
19.
G.
Jenner
,
Mini-Revs. in Organic Chem.
1
,
9
(
2004
).
20.
B.
Rodriguez-Spong
,
Ch. P.
Price
,
A.
Jayasankar
,
A. J.
Matzger
, and
N.
Rodriguez-Hornedo
,
Adv. Drug Delivery Rev.
56
,
241
(
2004
).
21.
J.
Hemley
,
Rev. Mineral.
37
,
671
(
1998
).
22.
J.-P.
Poirier
,
Introduction to the Physics of the Earth’s Interior
(
Cambridge University Press
,
Cambridge
,
2000
).
23.
E. D.
DiMarzio
,
J. H.
Gibbs
,
P. D.
Fleming
, and
I. C.
Sanchez
,
Macromolecules
9
,
763
(
1976
).
24.
U.
Bengtzelius
,
W.
Goetze
, and
A.
Sjoelander
,
J. Phys. C
17
,
5914
(
1994
).
25.
V.
Skorudonov
and
Yu. K.
Godovskii
,
Polym. Sci., Ser. A Ser. B
35
,
562
(
1993
).
26.
E.
Donth
and
R.
Conrad
,
Acta Polym.
31
,
47
(
1980
).
27.
R.
Lach
,
W.
Grellmann
,
K.
Schroeter
, and
E.
Donth
,
Polymer
40
,
1481
(
1999
).
28.
F. E.
Simon
and
G.
Glatzel
,
Z. Anorg. Allg. Chem.
178
,
309
(
1929
).
29.
S. E.
Babb
,
Rev. Mod. Phys.
35
,
400
(
1963
).
30.
C.
Rein
and
D.
Demus
,
Cryst. Res. Technol.
28
,
273
(
1993
).
31.
V. V.
Kechin
,
J. Phys.: Condens. Matter
7
,
531
(
1995
);
V. V.
Kechin
,
Phys. Rev. B
65
,
05121
(
2001
).
32.
L.
Burakowsky
,
D. L.
Preston
, and
R. R.
Silbar
,
J. Appl. Phys.
88
,
6294
(
2000
).
33.
K.
Fuchizaki
,
Y.
Fuji
,
Y.
Ohishi
,
A.
Ohmura
,
N.
Hamaya
,
Y.
Katayama
, and
T.
Okada
,
J. Chem. Phys.
120
,
11196
(
2004
).
34.
D. I.
Bower
,
An Introduction to Polymer Physics
(
Cambridge University Press
,
Cambridge
,
2002
).
35.
E.
Williams
and
C. A.
Angell
,
J. Phys. Chem.
8
,
232
(
1977
).
36.
N. S.
Bagdassarov
,
J.
Maumus
,
B.
Poe
,
A. B.
Slutski
, and
V. K.
Bulatov
,
Phys. Chem. Glasses
45
,
197
(
2004
).
37.
Z.
Trybula
and
J.
Stankowski
,
Condens. Matter Phys.
1
,
311
(
1998
).
38.
G. A.
Samara
and
H.
Terauchi
,
Phys. Rev. Lett.
59
,
347
(
1987
).
39.
G. P.
Johari
and
E.
Whalley
,
Faraday Symp. Chem. Soc.
6
,
23
(
1972
).
40.
R. L.
Cook
,
H. E.
King
, Jr.
,
Ch. A.
Herbst
, and
D. R.
Herschbach
,
J. Chem. Phys.
100
,
5178
(
1994
).
41.
B. L.
Schulte
and
W. F.
Oliver
III
, presented in the
Meeting of The American Physical Society
,
St. Louis
,
USA
,
1996
(unpublished), http://flux.aps.org/meetings/YR9596/BAPSMAR96/abs/S2480008.html;
W. F.
Oliver
 III
,
Mater. Res. Soc. Symp. Proc.
464
,
21
(
1997
).
42.
A.
Reiser
,
G.
Kasper
, and
S.
Hunkliger
,
Phys. Rev. B
72
,
094204
(
2004
);
A.
Reiser
, Ph.D. thesis,
Ruprecht-Karls-Universität
, Heidelberg, Germany,
2005
.
43.
Liquids under Negative Pressures
,
NATO Sci. Series II
, Vol.
84
, edited by
A. R.
Imre
,
H. J.
Maris
, and
P. R.
Williams
(
Kluwer
,
Dordrecht
,
2002
).
44.
C. A.
Angell
and
Z.
Quing
,
Phys. Rev.
39
,
8784
(
1989
).
45.
V. P.
Skripov
and
M. Z.
Faizullin
,
Dokl. Phys.
46
,
403
(
2001
).
46.
L.
Landa
and
K.
Landa
,
J. Non-Cryst. Solids
348
,
59
(
2004
).
47.
F. H.
Stillinger
,
P. G.
Debenedetti
, and
T.
Truskett
,
J. Phys. Chem. B
105
,
11809
(
2001
).
48.
M.
Utz
,
P. G.
Debenedetti
, and
F.
Stillinger
,
J. Chem. Phys.
114
,
10049
(
2001
).
49.
V. N.
Novikov
and
A. P.
Sokolov
,
Phys. Rev. E
67
,
031507
(
2003
).
50.
P. F.
McMillan
,
Nat. Mater.
1
,
19
(
2002
).
51.
A.
Drozd-Rzoska
,
S. J.
Rzoska
, and
A. R.
Imre
,
J. Non-Cryst. Solids
(to be published), special Kia L. Ngai issue.
52.
53.
G. C.
Kennedy
,
A.
Jayaraman
, and
C.
Newton
,
Phys. Rev.
126
,
1363
(
1962
).
54.
E.
Gregoryanz
,
O.
Degtyareva
,
M.
Somayazulu
,
R. J.
Hemley
, and
H.-K.
Mao
,
Phys. Rev. Lett.
94
,
185502
(
2005
).
55.
G. W. H.
Hoene
,
Thermochim. Acta
332
,
115
(
1999
);
G. W. H.
Hoene
,
S.
Rastogi
, and
B.
Wunderlich
,
Polymer
41
,
8869
(
2000
).
56.

The value of dTgdP23 holds for low molecular organic liquids, molten oxides, and asymmetrical polymers. For symmetrical polymers dTgdP12 is recommended.

57.
K. N.
Pham
,
A. M.
Puertas
,
J.
Bergenholtz
,
S. U.
Egelhaaf
,
A.
Moussaid
,
P. N.
Pusey
,
A. B.
Schofield
,
M. E.
Cates
,
M.
Fuchs
, and
W. C. K.
Poon
,
Science
296
,
104
(
2002
).
58.
S.-H.
Chen
,
W.-R.
Chen
, and
F.
Mallamace
,
Phys. Rev. E
66
,
021403
(
2002
).
59.
F.
Sciortino
,
Nat. Mater.
1
,
1
(
2002
).
61.
M. L.
Ferrer
,
C.
Lawrence
,
B. G.
Demirjan
,
D.
Kivelson
,
C.
Alba-Simionesco
, and
G.
Tarjus
,
J. Chem. Phys.
109
,
8010
(
1998
).
62.
B. V. R.
Tata
,
P. S.
Mohanty
, and
M. C.
Valsakumar
,
Phys. Rev. Lett.
88
,
018302
(
2002
).
63.
Th.
Voigtmann
and
W. C. K.
Poon
,
J. Phys.: Condens. Matter
18
,
L465
(
2006
).
You do not currently have access to this content.