The electron-attached (EA) and ionized (IP) symmetry-adapted-cluster configuration-interaction (SAC-CI) methods and their equation-of-motion coupled-cluster (EOMCC) analogs provide an elegant framework for studying open-shell systems. As shown in this study, these schemes require the presence of higher-order excitations, such as the four-particle-three-hole (4p-3h) or four-hole–three-particle (4h-3p) terms, in the electron attaching or ionizing operator R in order to produce accurate ground- and excited-state potential energy surfaces of radicals along bond breaking coordinates. The full inclusion of the 4p-3h4h-3p excitations in the EA/IP SAC-CI and EOMCC methods leads to schemes which are far too expensive for calculations involving larger radicals and realistic basis sets. In order to reduce the large costs of such schemes without sacrificing accuracy, the active-space EA/IP EOMCC methodology [J. R. Gour et al, J. Chem. Phys.123, 134113 (2005)] is extended to the EA/IP SAC-CI approaches with 4p-3h4h-3p excitations. The resulting methods, which use a physically motivated set of active orbitals to pick out the most important 3p-2h3h-2p and 4p-3h4h-3p excitations, represent practical computational approaches for high-accuracy calculations of potential energy surfaces of radicals. To illustrate the potential offered by the active-space EA/IP SAC-CI approaches with up to 4p-3h4h-3p excitations, the results of benchmark calculations for the potential energy surfaces of the low-lying doublet states of CH and OH are presented and compared with other SAC-CI and EOMCC methods, and full CI results.

1.
F.
Coester
,
Nucl. Phys.
7
,
421
(
1958
).
2.
F.
Coester
and
H.
Kümmel
,
Nucl. Phys.
17
,
477
(
1960
).
3.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
4.
J.
Čížek
,
Adv. Chem. Phys.
14
,
35
(
1969
).
5.
J.
Čížek
and
J.
Paldus
,
Int. J. Quantum Chem.
5
,
359
(
1971
).
6.
K.
Emrich
,
Nucl. Phys. A
351
,
379
(
1981
).
7.
J.
Geertsen
,
M.
Rittby
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
164
,
57
(
1989
).
8.
D. C.
Comeau
and
R. J.
Bartlett
,
Chem. Phys. Lett.
207
,
414
(
1993
).
9.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
10.
P.
Piecuch
and
R. J.
Bartlett
,
Adv. Quantum Chem.
34
,
295
(
1999
).
11.
H.
Nakatsuji
and
K.
Hirao
,
Chem. Phys. Lett.
47
,
569
(
1977
).
12.
H.
Nakatsuji
and
K.
Hirao
,
J. Chem. Phys.
68
,
2053
(
1978
).
13.
H.
Nakatsuji
and
K.
Hirao
,
J. Chem. Phys.
68
,
4279
(
1978
).
14.
H.
Nakatsuji
,
Chem. Phys. Lett.
59
,
362
(
1978
).
15.
H.
Nakatsuji
,
Chem. Phys. Lett.
67
,
329
(
1979
).
16.
H.
Nakatsuji
,
Chem. Phys. Lett.
67
,
334
(
1979
).
17.
H.
Nakatsuji
and
K.
Hirao
,
Int. J. Quantum Chem.
20
,
1301
(
1981
).
18.
H.
Nakatsuji
,
K.
Ohta
, and
K.
Hirao
,
J. Chem. Phys.
75
,
2952
(
1981
).
19.
H.
Nakatsuji
,
K.
Ohta
, and
T.
Yonezawa
,
J. Phys. Chem.
87
,
3068
(
1983
).
20.
H.
Nakatsuji
, in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszczyński
(
World Scientific
,
Singapore
,
1997
), Vol.
2
, pp.
62
124
, and references therein.
21.
H.
Nakatsuji
,
Bull. Chem. Soc. Jpn.
78
,
1705
(
2005
), and references therein.
22.
H.
Monkhorst
,
Int. J. Quantum Chem., Quantum Chem. Symp.
11
,
421
(
1977
).
23.
E.
Dalgaard
and
H.
Monkhorst
,
Phys. Rev. A
28
,
1217
(
1983
).
24.
D.
Mukherjee
and
P. K.
Mukherjee
,
Chem. Phys.
39
,
325
(
1979
).
25.
M.
Takahashi
and
J.
Paldus
,
J. Chem. Phys.
85
,
1486
(
1986
).
26.
G. D.
Purvis
 III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
27.
G. E.
Scuseria
,
A. C.
Scheiner
,
T. J.
Lee
,
J. E.
Rice
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
86
,
2881
(
1987
).
28.
P.
Piecuch
and
J.
Paldus
,
Int. J. Quantum Chem.
36
,
429
(
1989
).
29.
H.
Koch
and
P.
Jørgensen
,
J. Chem. Phys.
93
,
3333
(
1990
).
30.
H.
Koch
,
H. J.
Aa. Jensen
,
P.
Jørgensen
, and
T.
Helgaker
,
J. Chem. Phys.
93
,
3345
(
1990
).
31.
S.
Hirata
,
J. Chem. Phys.
121
,
51
(
2004
).
32.
C. E.
Smith
,
R. A.
King
, and
T. D.
Crawford
,
J. Chem. Phys.
122
,
054110
(
2005
).
33.
M.
Włoch
,
J. R.
Gour
,
K.
Kowalski
, and
P.
Piecuch
,
J. Chem. Phys.
122
,
214107
(
2005
).
34.
J. R.
Gour
,
P.
Piecuch
, and
M.
Włoch
,
J. Chem. Phys.
123
,
134113
(
2005
).
35.
J. R.
Gour
,
P.
Piecuch
, and
M.
Włoch
,
Int. J. Quantum Chem.
106
,
2854
(
2006
).
36.
M.
Nooijen
and
R. J.
Bartlett
,
J. Chem. Phys.
102
,
3629
(
1995
).
37.
M.
Nooijen
and
R. J.
Bartlett
,
J. Chem. Phys.
102
,
6735
(
1995
).
38.
R. J.
Bartlett
and
J. F.
Stanton
, in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
D. B.
Boyd
(
VCH
,
New York
,
1994
), Vol.
5
, pp.
65
169
.
39.
M.
Nooijen
and
J. G.
Snijders
,
Int. J. Quantum Chem., Quantum Chem. Symp.
26
,
55
(
1992
).
40.
M.
Nooijen
and
J. G.
Snijders
,
Int. J. Quantum Chem.
48
,
15
(
1993
).
41.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
101
,
8938
(
1994
).
42.
H.
Nakatsuji
,
Chem. Phys. Lett.
177
,
331
(
1991
).
43.
H.
Nakatsuji
and
M.
Ehara
,
J. Chem. Phys.
98
,
7179
(
1993
).
44.
H.
Nakatsuji
,
M.
Ehara
, and
T.
Momose
,
J. Chem. Phys.
100
,
5821
(
1994
).
45.
M.
Ishida
,
K.
Toyota
,
M.
Ehara
,
M. J.
Frisch
, and
H.
Nakatsuji
,
J. Chem. Phys.
120
,
2593
(
2004
).
46.
S.
Hirata
,
M.
Nooijen
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
328
,
459
(
2000
).
47.
M.
Kamiya
and
S.
Hirata
,
J. Chem. Phys.
125
,
074111
(
2006
).
48.
I.
Lindgren
and
D.
Mukherjee
,
Phys. Rep.
151
,
93
(
1987
).
49.
D.
Mukherjee
and
S.
Pal
,
Adv. Quantum Chem.
20
,
291
(
1989
).
50.
B.
Jeziorski
and
H. J.
Monkhorst
,
Phys. Rev. A
24
,
1668
(
1981
).
51.
J.
Paldus
, in
Methods in Computational Molecular Physics
,
NATO Advanced Study Institute, Series B: Physics
, edited by
S.
Wilson
and
G. H. F.
Diercksen
(
Plenum
,
New York
,
1992
), Vol.
293
, pp.
99
194
.
52.
J.
Paldus
and
X.
Li
,
Adv. Chem. Phys.
110
,
1
(
1999
).
53.
P.
Piecuch
and
K.
Kowalski
,
Int. J. Mol. Sci.
3
,
676
(
2002
).
54.
K.
Kowalski
and
P.
Piecuch
,
Phys. Rev. A
61
,
052506
(
2000
).
55.
J.
Paldus
,
P.
Piecuch
,
L.
Pylypow
, and
B.
Jeziorski
,
Phys. Rev. A
47
,
2738
(
1993
).
56.
K.
Kowalski
and
P.
Piecuch
,
Int. J. Quantum Chem.
80
,
757
(
2000
).
57.
P.
Piecuch
,
R.
Toboła
, and
J.
Paldus
,
Chem. Phys. Lett.
210
,
243
(
1993
).
58.
P.
Piecuch
and
J.
Paldus
,
Phys. Rev. A
49
,
3479
(
1994
).
59.
K.
Jankowski
,
J.
Paldus
,
I.
Grabowski
, and
K.
Kowalski
,
J. Chem. Phys.
97
,
7600
(
1992
);
K.
Jankowski
,
J.
Paldus
,
I.
Grabowski
, and
K.
Kowalski
,
J. Chem. Phys.
101
,
1759
(E) (
1994
).
60.
K.
Jankowski
,
J.
Paldus
,
I.
Grabowski
, and
K.
Kowalski
,
J. Chem. Phys.
101
,
3085
(
1994
).
61.
K. R.
Shamasundar
and
S.
Pal
,
J. Chem. Phys.
114
,
1981
(
2001
);
K. R.
Shamasundar
and
S.
Pal
,
J. Chem. Phys.
115
,
1979
(E) (
2001
).
62.
P.
Piecuch
and
J. I.
Landman
,
Parallel Comput.
26
,
913
(
2000
).
63.
K.
Kowalski
and
P.
Piecuch
,
Chem. Phys. Lett.
334
,
89
(
2001
).
64.
K.
Kowalski
and
P.
Piecuch
,
J. Mol. Struct.: THEOCHEM
547
,
191
(
2001
).
65.
K.
Kowalski
and
P.
Piecuch
,
Mol. Phys.
102
,
2425
(
2004
).
66.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
119
,
5320
(
2003
).
67.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
119
,
5334
(
2003
).
68.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
119
,
5346
(
2003
).
69.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
120
,
5890
(
2004
).
70.
M.
Musiał
and
R. J.
Bartlett
,
J. Chem. Phys.
121
,
1670
(
2004
).
71.
M.
Musiał
,
L.
Meissner
,
S. A.
Kucharski
, and
R. J.
Bartlett
,
J. Chem. Phys.
122
,
224110
(
2005
).
72.
M.
Hanrath
,
J. Chem. Phys.
123
,
084102
(
2005
).
73.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
115
,
643
(
2001
).
74.
K.
Kowalski
and
P.
Piecuch
,
Chem. Phys. Lett.
347
,
237
(
2001
).
75.
S. A.
Kucharski
,
M.
Włoch
,
M.
Musiał
, and
R. J.
Bartlett
,
J. Chem. Phys.
115
,
8263
(
2001
).
76.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
121
,
9257
(
2004
).
77.
H.
Koch
,
O.
Christiansen
,
P.
Jørgensen
, and
J.
Olsen
,
Chem. Phys. Lett.
244
,
75
(
1995
).
78.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
J. Chem. Phys.
103
,
7429
(
1995
).
79.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
J. Chem. Phys.
105
,
1451
(
1996
).
80.
O.
Christiansen
,
H.
Koch
,
P.
Jørgensen
, and
J.
Olsen
,
Chem. Phys. Lett.
256
,
185
(
1996
).
81.
P.
Piecuch
,
K.
Kowalski
,
I. S. O.
Pimienta
, and
M. J.
McGuire
,
Int. Rev. Phys. Chem.
21
,
527
(
2002
).
82.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
120
,
1715
(
2004
).
83.
P.
Piecuch
,
K.
Kowalski
,
I. S. O.
Pimienta
,
P.-D.
Fan
,
M.
Lodriguito
,
M. J.
McGuire
,
S. A.
Kucharski
,
T.
Kuś
, and
M.
Musiał
,
Theor. Chem. Acc.
112
,
349
(
2004
).
84.
M.
Musiał
and
R. J.
Bartlett
,
J. Chem. Phys.
119
,
1901
(
2003
).
85.
M.
Musiał
,
S. A.
Kucharski
, and
R. J.
Bartlett
,
J. Chem. Phys.
118
,
1128
(
2003
).
86.
M.
Musiał
and
R. J.
Bartlett
,
Chem. Phys. Lett.
384
,
210
(
2004
).
87.
Y. J.
Bomble
,
J. C.
Saeh
,
J. F.
Stanton
,
P. G.
Szalay
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
122
,
154107
(
2005
).
88.
J. R.
Gour
and
P.
Piecuch
,
J. Chem. Phys.
125
,
234107
(
2006
).
89.
K. B.
Ghose
,
P.
Piecuch
, and
L.
Adamowicz
,
J. Chem. Phys.
103
,
9331
(
1995
).
90.
P.
Piecuch
,
S. A.
Kucharski
, and
R. J.
Bartlett
,
J. Chem. Phys.
110
,
6103
(
1999
).
91.
P.
Piecuch
,
S. A.
Kucharski
, and
V.
Špirko
,
J. Chem. Phys.
111
,
6679
(
1999
).
92.
K.
Kowalski
and
P.
Piecuch
,
Chem. Phys. Lett.
344
,
165
(
2001
).
93.
H.
Nakatsuji
,
Chem. Phys.
75
,
425
(
1983
).
94.
H.
Nakatsuji
,
J.
Ushio
, and
T.
Yonezawa
,
Can. J. Chem.
63
,
1857
(
1985
).
95.
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chim. Acta
35
,
33
(
1974
).
96.
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chim. Acta
39
,
217
(
1975
).
97.
P. J.
Bruna
and
S. D.
Peyerimhoff
,
Adv. Chem. Phys.
67
,
1
(
1998
).
98.
N.
Oliphant
and
L.
Adamowicz
,
Int. Rev. Phys. Chem.
12
,
339
(
1993
).
99.
P.
Piecuch
,
N.
Oliphant
, and
L.
Adamowicz
,
J. Chem. Phys.
99
,
1875
(
1993
).
100.
P.
Piecuch
and
L.
Adamowicz
,
J. Chem. Phys.
100
,
5792
(
1994
).
101.
P.
Piecuch
and
L.
Adamowicz
,
Chem. Phys. Lett.
221
,
121
(
1994
).
102.
P.
Piecuch
and
L.
Adamowicz
,
J. Chem. Phys.
102
,
898
(
1995
).
103.
K. B.
Ghose
and
L.
Adamowicz
,
J. Chem. Phys.
103
,
9324
(
1995
).
104.
V.
Alexandrov
,
P.
Piecuch
, and
L.
Adamowicz
,
J. Chem. Phys.
102
,
3301
(
1995
).
105.
K. B.
Ghose
,
P.
Piecuch
,
S.
Pal
, and
L.
Adamowicz
,
J. Chem. Phys.
104
,
6582
(
1996
).
106.
L.
Adamowicz
,
P.
Piecuch
, and
K. B.
Ghose
,
Mol. Phys.
94
,
225
(
1998
).
107.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
113
,
8490
(
2000
).
108.
K.
Kowalski
,
S.
Hirata
,
M.
Włoch
,
P.
Piecuch
, and
T. L.
Windus
,
J. Chem. Phys.
123
,
074319
(
2005
).
109.
P.
Piecuch
,
S.
Hirata
,
K.
Kowalski
,
P.-D.
Fan
, and
T. L.
Windus
,
Int. J. Quantum Chem.
106
,
79
(
2006
).
110.
L.
Adamowicz
,
J.-P.
Malrieu
, and
V. V.
Ivanov
,
J. Chem. Phys.
112
,
10075
(
2000
).
111.
V. V.
Ivanov
and
L.
Adamowicz
,
J. Chem. Phys.
112
,
9258
(
2000
).
112.
D. I.
Lyakh
,
V. V.
Ivanov
, and
L.
Adamowicz
,
J. Chem. Phys.
122
,
024108
(
2005
).
113.
J.
Olsen
,
J. Chem. Phys.
113
,
7140
(
2000
).
114.
J. W.
Krogh
and
J.
Olsen
,
Chem. Phys. Lett.
344
,
578
(
2001
).
115.
M.
Kállay
,
P. G.
Szalay
, and
P. G.
Surján
,
J. Chem. Phys.
117
,
980
(
2002
).
116.
L. V.
Slipchenko
and
A. I.
Krylov
,
J. Chem. Phys.
123
,
084107
(
2005
).
117.
P.-D.
Fan
and
S.
Hirata
,
J. Chem. Phys.
124
,
104108
(
2006
).
118.
A.
Kohn
and
J.
Olsen
,
J. Chem. Phys.
125
,
174110
(
2006
).
119.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, Revision C.02, Gaussian, Inc., Wallingford, CT,
2004
.
120.
L.
Meissner
and
R. J.
Bartlett
,
J. Chem. Phys.
102
,
7490
(
1995
).
121.
D.
Mukhopadhyay
,
S.
Mukhopadhyay
,
R.
Chaudhuri
, and
D.
Mukherjee
,
Theor. Chim. Acta
80
,
441
(
1991
).
122.
L.
Meissner
and
R. J.
Bartlett
,
J. Chem. Phys.
94
,
6670
(
1991
).
123.
J. F.
Stanton
,
J. Chem. Phys.
101
,
8928
(
1994
).
124.
L.
Meissner
,
J. Chem. Phys.
108
,
9227
(
1998
).
125.
J.
Olsen
,
A. M.
Sánchez de Merás
,
H. J. Aa.
Jensen
, and
P.
Jørgensen
,
Chem. Phys. Lett.
154
,
380
(
1989
).
126.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
127.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
128.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
 et al,
J. Comput. Chem.
14
,
1347
(
1993
).
129.
See EPAPS Document No. E-JCPSA6-126-311716 for the ground- and excited-state energies of CH and OH obtained with the EA/IP EOMCC, SAC-CI, truncated CI, and full CI methods, and the corresponding CC, SAC, and full CI ground-state energies of CH+ and OH at several internuclear separations. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
130.
M.
Zachwieja
,
J. Mol. Spectrosc.
170
,
285
(
1995
).
131.
P.
Piecuch
,
M.
Włoch
,
J. R.
Gour
, and
A.
Kinal
,
Chem. Phys. Lett.
418
,
463
(
2005
).
132.
P.
Piecuch
and
M.
Włoch
,
J. Chem. Phys.
123
,
224105
(
2005
).
133.
K. P.
Huber
and
G.
Herzberg
, Constants of Diatomic Molecules, data prepared by J. W. Gallagher and R. D. Johnson III, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005, edited by
P. J.
Linstrom
and
W. G.
Mallard
, National Institute of Standards and Technology, Gaithersburg, MD, 20899 (http://webbook.nist.gov).

Supplementary Material

You do not currently have access to this content.