We present a simplified and improved version of the string method, originally proposed by E et al [Phys. Rev. B66, 052301 (2002)] for identifying the minimum energy paths in barrier-crossing events. In this new version, the step of projecting the potential force to the direction normal to the string is eliminated and the full potential force is used in the evolution of the string. This not only simplifies the numerical procedure, but also makes the method more stable and accurate. We discuss the algorithmic details of the improved string method, analyze its stability, accuracy and efficiency, and illustrate it via numerical examples. We also show how the string method can be combined with the climbing image technique for the accurate calculation of saddle points and we present another algorithm for the accurate calculation of the unstable directions at the saddle points.

1.
A.
Ulitsky
and
R.
Elber
,
J. Chem. Phys.
96
,
1510
(
1990
).
2.
S.
Fischer
and
M.
Karplus
,
Chem. Phys. Lett.
194
,
252
(
1992
).
3.
R.
Olender
and
R.
Elber
,
J. Chem. Phys.
105
,
9299
(
1996
).
4.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
,
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccoti
, and
D. F.
Coker
(
World Scientific
,
Singapore
,
1998
).
5.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
111
,
7010
(
1999
).
6.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
7.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
,
Phys. Rev. B
66
,
052301
(
2002
).
8.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
9.
To be more precise, if the string is discretized into a number of points (or images) {φi(t),i=0,1,,N}, an up-winding scheme must be used to calculate the discretized approximation to the tangent vector along the string in order that the scheme for integrating (4) be stable. This amounts, e.g., to using the following:
τ̂i={φi+1φiφi+1φi,ifV(φi+1)>V(φi)>V(φi1)φiφi1φiφi1,ifV(φi+1)<V(φi)<V(φi1)φi+1φi1φi+1φi1,ifV(φi+1)<V(φi)>V(φi1)orV(φi+1)>V(φi)<V(φi1).}
10.
M. I.
Freidlin
and
A. D.
Wentzell
,
Random Perturbations of Dynamical Systems
, 2nd ed. (
Springer
,
New York
,
1998
).
11.
R. E.
Gililan
and
K. R.
Wilson
,
J. Chem. Phys.
97
,
1757
(
1992
).
12.
K. W.
Morton
and
D. F.
Mayers
,
Numerical Solution of Partial Differential Equations
, 2nd ed. (
Cambridge University
,
Cambridge
,
2005
).
13.
K.
Mueller
,
Angew. Chem.
19
,
1
(
1980
).
14.
W.
Ren
,
Commun. Math. Sci.
1
,
377
(
2003
).
15.
G. E.
Forsythe
,
M. A.
Malcolm
, and
C. B.
Moler
,
Computer Methods for Mathematical Computations
(
Prentics-Hall
,
Englewood Cliffs, NJ
,
1977
).
You do not currently have access to this content.