Molecular dynamics simulation generates large quantities of data that must be interpreted using physically meaningful analysis. A common approach is to describe the system dynamics in terms of transitions between coarse partitions of conformational space. In contrast to previous work that partitions the space according to geometric proximity, the authors examine here clustering based on kinetics, merging configurational microstates together so as to identify long-lived, i.e., dynamically metastable, states. As test systems microsecond molecular dynamics simulations of the polyalanines Ala8 and Ala12 are analyzed. Both systems clearly exhibit metastability, with some kinetically distinct metastable states being geometrically very similar. Using the backbone torsion rotamer pattern to define the microstates, a definition is obtained of metastable states whose lifetimes considerably exceed the memory associated with interstate dynamics, thus allowing the kinetics to be described by a Markov model. This model is shown to be valid by comparison of its predictions with the kinetics obtained directly from the molecular dynamics simulations. In contrast, clustering based on the hydrogen-bonding pattern fails to identify long-lived metastable states or a reliable Markov model. Finally, an approach is proposed to generate a hierarchical model of networks, each having a different number of metastable states. The model hierarchy yields a qualitative understanding of the multiple time and length scales in the dynamics of biomolecules.

1.
W. C.
Swope
,
J. W.
Pitera
,
F.
Suits
,
M.
Pitman
, and
M.
Eleftheriou
,
J. Phys. Chem. B
108
,
6582
(
2004
).
2.
S. P.
Elmer
,
S.
Park
, and
V. S.
Pande
,
J. Chem. Phys.
123
,
114902
(
2005
).
3.
F.
Noé
,
D.
Krachtus
,
J. C.
Smith
, and
S.
Fischer
,
J. Chem. Theory Comput.
2
,
840
(
2006
).
4.
N.
Singhal
,
C.
Snow
, and
V. S.
Pande
,
J. Chem. Phys.
121
,
415
(
2004
).
5.
R.
Czerminski
and
R.
Elber
,
J. Chem. Phys.
92
,
5580
(
1990
).
6.
R. S.
Berry
and
R.
Breitengraser-Kunz
,
Phys. Rev. Lett.
74
,
3951
(
1995
).
7.
O. M.
Becker
and
M.
Karplus
,
J. Chem. Phys.
106
,
1495
(
1996
).
8.
Y.
Levy
and
O. M.
Becker
,
J. Chem. Phys.
114
,
993
(
2001
).
9.
Y.
Levy
,
J.
Jortner
, and
O. M.
Becker
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
2188
(
2001
).
10.
P. N.
Mortenson
and
D. J.
Wales
,
J. Chem. Phys.
114
,
6443
(
2001
).
11.
Y.
Levy
,
J.
Jortner
, and
O. M.
Becker
,
J. Chem. Phys.
115
,
10533
(
2001
).
12.
P. N.
Mortenson
,
D. A.
Evans
, and
D. J.
Wales
,
J. Chem. Phys.
117
,
1363
(
2002
).
13.
D. A.
Evans
and
D. J.
Wales
,
J. Chem. Phys.
118
,
3891
(
2003
).
14.
D. A.
Evans
and
D. J.
Wales
,
J. Chem. Phys.
119
,
9947
(
2003
).
15.
D. A.
Evans
and
D. J.
Wales
,
J. Chem. Phys.
121
,
1080
(
2004
).
16.
F.
Despa
,
D. J.
Wales
, and
R. S.
Berry
,
J. Chem. Phys.
122
,
024103
(
2005
).
17.
N.
Singhal
and
V. S.
Pande
,
J. Chem. Phys.
123
,
204909
(
2005
).
18.
F.
Noé
,
M.
Oswald
,
G.
Reinelt
,
S.
Fischer
, and
J. C.
Smith
,
Multiscale Model. Simul.
5
,
393
(
2006
).
19.
C.
Schütte
and
W.
Huisinga
,
Handbook of Numerical Analysis
,
Computational Chemistry Vol. X
, edited by
P. G.
Ciaret
and
J.-L.
Lions
(
North-Holland
,
Amsterdam
,
2003
), pp.
699
744
.
20.
H.
Hotelling
,
J. Educ. Psychol.
24
,
417
(
1933
).
21.
L. S. D.
Caves
,
J. D.
Evanseck
, and
M.
Karplus
,
Protein Sci.
7
,
649
(
1998
).
22.
M. E.
Karpen
,
D. T.
Tobias
, and
C. L.
Brooks
 III
,
Biochemistry
32
,
412
(
1993
).
23.
B.
de Groot
,
X.
Daura
,
A.
Mark
, and
H.
Grubmüller
,
J. Mol. Biol.
301
,
299
(
2001
).
24.
G.
Moraitakis
and
J. M.
Goodfellow
,
Biophys. J.
84
,
2149
(
2003
).
25.
E. J.
Sorin
and
V. S.
Pande
,
Biophys. J.
88
,
2472
(
2005
).
26.
S. P.
Elmer
,
S.
Park
, and
V. S.
Pande
,
J. Chem. Phys.
123
,
114903
(
2005
).
27.
M.
Andrec
,
A. K.
Felts
,
E.
Gallicchio
, and
R. M.
Levy
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6801
(
2005
).
28.
O. M.
Becker
,
Proteins
27
,
213
(
1997
).
29.
F. A.
Hamprecht
,
C.
Peter
,
X.
Daura
,
W.
Thiel
, and
W. F.
van Gunsteren
,
J. Chem. Phys.
114
,
2079
(
2001
).
30.
I.
Horenko
,
E.
Dittmer
,
A.
Fischer
, and
Ch.
Schütte
,
Multiscale Model. Simul.
5
,
802
(
2006
).
31.
V.
Schultheis
,
T.
Hirschberger
,
H.
Carstens
, and
P.
Tavan
,
J. Chem. Theory Comput.
1
,
515
(
2005
).
32.
M.
Weber
, ZIB Report No. 03–04,
2003
(unpublished).
33.
P.
Deuflhard
and
M.
Weber
, ZIB Report No. 03–09,
2003
(unpublished).
34.
B. R.
Brooks
,
R. E.
Bruccoleri
,
B. D.
Olafson
,
D. J.
States
,
S.
Swaminathan
, and
M.
Karplus
,
J. Comput. Chem.
4
,
187
(
1983
).
35.
M.
Schaefer
and
M.
Karplus
,
J. Chem. Phys.
100
,
1578
(
1996
).
36.
A.
Strehl
and
J.
Ghosh
,
J. Mach. Learn. Res.
3
,
583
(
2002
).
37.
Y. Y.
Yao
,
Entropy Measures, Maximum Entropy Principle and Emerging Applications
(
Springer
,
New York
,
2003
), Chap. 6, pp.
115
136
.
38.
O. F.
Lange
and
H.
Grubmüller
,
Proteins
62
,
1053
(
2006
).
39.
M.
Weber
,
W.
Rungsarityotin
, and
A.
Schliep
, ZIB Report No. 04–39 (
2004
) (unpublished).
40.
C.
Schütte
,
A.
Fischer
,
W.
Huisinga
, and
P.
Deuflhard
,
J. Comput. Phys.
151
,
146
(
1999
).
41.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
, 4th ed. (
Elsevier
,
Amsterdam
,
2006
).
42.
P.
Deulfhard
,
W.
Huisinga
,
A.
Fischer
, and
C.
Schütte
,
Linear Algebr. Appl.
315
,
39
(
2000
).
43.
W. C.
Swope
,
J. W.
Pitera
, and
F.
Suits
,
J. Phys. Chem. B
108
,
6571
(
2004
).
44.
S.
Park
and
V. S.
Pande
,
J. Chem. Phys.
124
,
054118
(
2006
).
45.
J. D.
Chodera
,
W. C.
Swope
,
J. W.
Pitera
, and
K. A.
Dill
,
Multiscale Model. Simul.
5
,
1214
(
2006
).
46.
A.
Chakrabarty
,
T.
Kortemme
, and
R. L.
Baldwin
,
Protein Sci.
3
,
843
(
1994
).
47.
M. A.
Moret
,
P. G.
Bascutti
,
P. M.
Bisch
, and
K. C.
Mundim
,
J. Comput. Chem.
19
,
647
(
1998
).
48.
S. V.
Krivov
and
M.
Karplus
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
14766
(
2004
).
49.
J. D.
Chodera
,
K. A.
Dill
,
N.
Singhal
,
V. S.
Pande
,
W. C.
Swope
, and
J. W.
Pitera
,
J. Chem. Phys.
126
,
155101
(
2007
).
50.
J. D.
Honeycutt
and
D.
Thirumalai
,
Proc. Natl. Acad. Sci. U.S.A.
87
,
3526
(
1990
).
You do not currently have access to this content.