In this paper, we describe a quantum state tomography method based on global rotations of the spin system which, together with a coherence selection scheme, enables the complete density matrix reconstruction. The main advantage of this technique, in respect to previous proposals, is the use of much shorter rf pulses, which decreases significantly the time necessary for algorithm quantum state tomography. In this case, under adequate experimental conditions, the rf pulses correspond to simple spatial rotations of the spin states, and its analytical description is conveniently given in the irreducible tensor formalism. Simulated results show the feasibility of the method for a single spin 72 nucleus. As an experimental result, we exemplify the application of this method by tomographing the steps during the implementation of the Deutsch algorithm. The algorithm was implemented in a Na23 quadrupole nucleus using the strongly modulated pulses technique. We also extended the tomography method for a 3-coupled homonuclear spin 12 system, where an additional evolution under the internal Hamiltonian is necessary for zero order coherences evaluation.

1.
U.
Leonhardt
,
H.
Paul
, and
G. M.
Dariano
,
Phys. Rev. A
52
,
4899
(
1995
).
2.
U.
Leonhardt
,
Phys. Rev. Lett.
76
,
4293
(
1996
).
3.
R.
Walser
,
J. I.
Cirac
, and
P.
Zoller
,
Phys. Rev. Lett.
77
,
2658
(
1996
).
4.
A. S.
Parkins
,
P.
Marte
,
P.
Zoller
,
O.
Carnal
, and
H. J.
Kimble
,
Phys. Rev. A
51
,
1578
(
1995
).
5.
J. P.
Amiet
and
S.
Weigert
,
J. Phys. A
32
,
L269
(
1999
).
6.
R. R.
Ernst
and
G.
Bodenhausen
,
Principles of Nuclear Magnetic Resonance in One and Two Dimensions
(
Clarendon
,
Oxford
,
1987
).
7.
I. L.
Chuang
,
N.
Gershenfeld
,
M. G.
Kubinec
, and
D. W.
Leung
,
Proc. R. Soc. London, Ser. A
454
,
447
(
1998
).
8.
G. L.
Long
,
H. Y.
Yan
, and
Y.
Sun
,
J. Opt. B: Quantum Semiclassical Opt.
3
,
376
(
2001
).
9.
I. L.
Chuang
,
N.
Gershenfeld
, and
M.
Kubinec
,
Phys. Rev. Lett.
80
,
3408
(
1998
).
10.
F. A.
Bonk
,
E. R.
deAzevedo
,
R. S.
Sarthour
,
J. D.
Bulnes
,
J. C. C.
Freitas
,
A. P.
Guimaraes
,
I. S.
Oliveira
, and
T. J.
Bonagamba
,
J. Magn. Reson.
175
,
226
(
2005
).
11.
H.
Kampermann
and
W.
Veeman
,
Quantum Inf. Process.
1
,
327
(
2002
).
12.
F. A.
Bonk
 et al.,
Phys. Rev. A
69
,
042322
(
2004
).
13.
A. K.
Khitrin
and
B. M.
Fung
,
J. Chem. Phys.
112
,
6963
(
2000
).
14.
R.
Das
,
T. S.
Mahesh
, and
A.
Kumar
,
Phys. Rev. A
67
,
062304
(
2003
).
15.
G.
Yusa
,
K.
Muraki
,
K.
Takashina
,
K.
Hashimoto
, and
Y.
Hirayama
,
Nature (London)
434
,
1001
(
2005
).
16.
R.
Tycko
,
Nature (London)
434
,
966
(
2005
).
17.
Y.
Hirayama
,
A.
Miranowicz
,
T.
Ota
,
G.
Yusa
,
K.
Muraki
,
S. K.
Ozdemir
, and
N.
Imoto
,
J. Phys.: Condens. Matter
18
,
S885
(
2006
).
18.
E. M.
Fortunato
,
M. A.
Pravia
,
N.
Boulant
,
G.
Teklemariam
,
T. F.
Havel
, and
D. G.
Cory
,
J. Chem. Phys.
116
,
7599
(
2002
).
19.
D.
Varshalovich
,
A.
Moskalev
, and
V.
Khersonskii
,
Quantum Theory of Angular Momentum
(
World Scientific
,
Singapore
,
1988
).
20.
B. C.
Sanctuary
,
J. Chem. Phys.
64
,
4352
(
1976
).
21.
A.
Wokaun
and
R. R.
Ernst
,
Chem. Phys. Lett.
52
,
407
(
1977
).
22.
G.
Bodenhausen
,
H.
Kogler
, and
R. R.
Ernst
,
J. Magn. Reson.
58
,
370
(
1984
).
23.
A. D.
Bain
,
J. Magn. Reson.
56
,
418
(
1984
).
24.
D.
Suter
and
J. G.
Pearson
,
Chem. Phys. Lett.
144
,
328
(
1988
).
25.
P. J.
Grandinetti
,
Solid State Nucl. Magn. Reson.
23
,
1
(
2003
).
26.
H.
Kampermann
and
W. S.
Veeman
,
J. Chem. Phys.
122
,
214108
(
2005
).
27.
K.
Radley
,
L. W.
Reeves
, and
A. S.
Tracey
,
J. Phys. Chem.
80
,
174
(
1976
).
You do not currently have access to this content.