Combined ab initio and grand canonical Monte Carlo simulations have been performed to investigate the dependence of hydrogen storage in single-walled carbon nanotubes (SWCNTs) on both tube curvature and chirality. The ab initio calculations at the density functional level of theory can provide useful information about the nature of hydrogen adsorption in SWCNT selected sites and the binding under different curvatures and chiralities of the tube walls. Further to this, the grand canonical Monte Carlo atomistic simulation technique can model large-scale nanotube systems with different curvature and chiralities and reproduce their storage capacity by calculating the weight percentage of the adsorbed material (gravimetric density) under thermodynamic conditions of interest. The author’s results have shown that with both computational techniques, the nanotube’s curvature plays an important role in the storage process while the chirality of the tube plays none.

1.
A. C.
Dillon
,
K. M.
Jones
,
T. A.
Bekkedakt
,
C. H.
Kiang
,
D. S.
Bethune
, and
M. J.
Heben
,
Nature (London)
386
,
377
(
1997
).
2.
R. G.
Ding
,
G. Q.
Lu
,
Z. F.
Yan
, and
M. A.
Wilson
,
J. Nanosci. Nanotechnol.
1
,
7
(
2001
).
3.
A. C.
Dillon
and
M. J.
Heben
,
Appl. Phys. A: Mater. Sci. Process.
A72
,
133
(
2001
).
4.
F. L.
Darkrim
,
P.
Malbrunot
, and
G. P.
Tartaglia
,
Int. J. Hydrogen Energy
27
,
193
(
2002
).
5.
A. D.
Lan
and
A.
Mukasyan
,
J. Phys. Chem. B
109
,
16011
(
2005
).
6.
B.
Panella
,
M.
Hirscher
, and
S.
Roth
,
Carbon
43
,
2209
(
2005
).
7.
C.
Liu
and
H. M.
Cheng
,
J. Phys. D
38
,
R231
(
2005
).
8.
Hydrogen Energy System-Production and Utilization of Hydrogen and Future Aspects
,
NATO ASI, Series E: Applied Sciences
Vol.
295
, edited by
Y.
Yuriim
(
Akcay
,
Turkey
,
1994
).
9.
E.
Lyris
,
D.
Argyropoulos
,
C. A.
Mitsopoulou
,
D.
Katakis
, and
E.
Vrachnou
,
J. Photochem. Photobiol., A
108
,
51
(
1997
);
S.
Alvarez
,
R.
Vicente
, and
R.
Hoffmann
,
J. Am. Chem. Soc.
107
,
6253
(
1985
).
10.
J.
Samios
,
D.
Katakis
,
D.
Dellis
,
E.
Lyris
, and
C. A.
Mitsopoulou
,
J. Chem. Soc., Faraday Trans.
94
,
3175
(
1998
).
11.
S.
Iijima
,
Nature (London)
354
,
56
(
1991
).
12.
M.
Terrones
,
W. K.
Hsu
,
H. W.
Kroto
, and
D. R. M.
Walton
,
Top. Curr. Chem.
199
,
189
(
1999
).
13.
E. T.
Thostenson
,
Z.
Ren
, and
T.-W.
Chou
,
Compos. Sci. Technol.
61
,
1899
(
2001
).
14.
M.
Baxendale
,
J. Mater. Sci.: Mater. Electron.
14
,
657
(
2003
).
15.
A. C.
Dillon
,
T. A.
Bekkedahl
,
K. M.
Jones
, and
M. J.
Heben
,
Fullerenes
3
,
716
(
1999
).
16.
F.
Darkrim
and
D.
Levesque
,
J. Chem. Phys.
109
,
4981
(
1998
).
17.
D.
Levesque
,
A.
Gicquel
,
F.
Darkrim
, and
S.
Beyaz Kayiran
,
J. Phys.: Condens. Matter
14
,
9285
(
2002
);
and
G.
Mpourmpakis
,
G. E.
Froudakis
,
J.
Samios
, and
G. P.
Lithoxoos
,
Nano Lett.
6
,
1581
(
2006
).
[PubMed]
18.
Q.
Wang
and
J. K.
Johnson
,
J. Phys. Chem. B
103
,
4809
(
1999
).
19.
Q.
Wang
and
J. K.
Johnson
,
J. Chem. Phys.
110
,
577
(
1998
).
20.
V.
Meregalli
and
M.
Parrinello
,
Appl. Phys. A: Mater. Sci. Process.
72
,
143
(
2001
);
M.
Becher
,
M.
Haluska
,
M.
Hirscher
 et al.,
C. R. Phys.
4
,
1055
(
2003
).
21.
G. E.
Froudakis
,
J. Phys.: Condens. Matter
14
,
R453
(
2002
).
22.
S.
Hynek
,
W.
Fuller
, and
J.
Bentley
,
Int. J. Hydrogen Energy
22
,
601
(
1997
).
23.
F.
Darkrim
and
D.
Levesque
,
J. Phys. Chem. B
104
,
6773
(
2000
).
24.
S. B.
Kayiran
,
F. D.
Lamari
, and
D.
Levesque
,
J. Phys. Chem. B
108
,
15211
(
2004
).
25.
K. A.
Williams
and
P. C.
Ecklund
,
Chem. Phys. Lett.
320
,
352
(
2000
).
26.
H.
Dodziuk
and
G.
Dolgonos
,
Chem. Phys. Lett.
356
,
79
(
2002
).
27.
V. V.
Simonyan
,
P.
Diep
, and
J. K.
Johnson
,
J. Chem. Phys.
111
,
9778
(
1999
).
28.
V. V.
Simonyan
and
J. K.
Johnson
,
J. Alloys Compd.
330
,
659
(
2002
).
29.
M. R.
Smith
,
E. W.
Bittner
,
W.
Shi
,
J. K.
Johnson
, and
B. C.
Bockrath
,
J. Phys. Chem. B
107
,
3752
(
2003
).
30.
G. E.
Froudakis
,
Nano Lett.
1
,
179
(
2001
).
31.
C. W.
Bauschlicher
,Jr.
,
Nano Lett.
1
,
223
(
2001
);
C. W.
Bauschlicher
, Jr.
and
C. R.
So
,
Nano Lett.
2
,
337
(
2002
).
32.
S. S.
Han
and
H. M.
Lee
,
Carbon
42
,
2169
(
2004
).
33.
X. R.
Zhang
,
D.
Cao
, and
J.
Chen
,
J. Phys. Chem. B
107
,
4942
(
2003
).
34.
G.
Mpourmpakis
,
E.
Tylianakis
, and
G.
Froudakis
,
J. Nanosci. Nanotechnol.
6
,
87
(
2006
).
35.
J. S.
Arellano
,
L. M.
Molina
,
A.
Rubio
, and
J. A.
Alonso
,
J. Chem. Phys.
112
,
8114
(
2000
).
36.
J. S.
Arellano
,
L. M.
Molina
,
A.
Rubio
,
M. J.
López
, and
J. A.
Alonso
,
J. Chem. Phys.
117
,
2281
(
2002
).
37.
Y.
Okamoto
and
Y.
Miyamoto
,
J. Phys. Chem. B
105
,
3470
(
2001
);
A.
Ferre-Vilaplana
,
J. Chem. Phys.
122
,
214724
(
2005
).
[PubMed]
38.
P.
Kowalcchi
,
H.
Tanaka
,
R.
Holyst
,
K.
Kaneto
,
T.
Ohmori
, and
J.
Miyamoto
,
J. Phys. Chem. B
109
,
17174
(
2005
).
39.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
);
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
40.
M. J.
Frisch
 et al., GAUSSIAN 03,
Revision B.02
(
2003
).
41.
G.
Mpourmpakis
and
G. E.
Froudakis
(unpublished).
42.
G. L.
Deitrick
,
L. E.
Scriven
, and
H. T.
Davis
,
J. Chem. Phys.
90
,
2370
(
1989
).
43.
The Monte Carlo Methods in Condensed Matter Physics
,
Topics in Applied Physics
Vol.
71
, edited by
K.
Binder
(
Springer
,
Berlin
,
1995
).
44.
S.
Brunauer
,
L. S.
Deming
,
W. S.
Deming
, and
E.
Teller
,
J. Am. Chem. Soc.
62
,
1723
(
1940
).
You do not currently have access to this content.