The intermolecular potentials for the NO(XΠ2)Kr and NO(AΣ+2)Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1A2 state [NO(XΠ2)Kr] and the multireference singles and doubles configuration interaction method for the excited 2A2 state [NO(AΣ+2)Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr–NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr–NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr–NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match spectroscopic results. A general overall view of the results suggests that, when the Kr–NO interaction takes place inside the matrix, potentials are rather symmetric and less repulsive than those for the triatomic system.

1.
J.
Jortner
, in
Femtochemistry, Ultrafast Chemical and Physical Processes in Molecular Systems
, edited by
M.
Chergui
(
World Scientific
,
Singapore
,
1996
), p.
15
.
2.
N.
Schwentner
,
E. E.
Koch
, and
J.
Jortner
,
Electronic Excitation in Condensed Rare Gas Solids
(
Springer
,
Berlin
,
1985
).
3.
V. E.
Bondybey
,
Adv. Chem. Phys.
41
,
269
(
1980
).
4.
N.
Schwentner
and
V. A.
Apkarian
,
Chem. Rev. (Washington, D.C.)
99
,
1481
(
1999
).
5.
I.
Benjamin
and
K. R.
Wilson
,
J. Chem. Phys.
90
,
4176
(
1989
).
6.
Q. L.
Liu
,
C.
Wan
, and
A. H.
Zewail
,
J. Phys. Chem.
100
,
18666
(
1996
).
7.
A. I.
Krylov
and
R. B.
Gerber
,
J. Chem. Phys.
100
,
4242
(
1994
).
8.
V. E.
Batista
and
D. F.
Coker
,
J. Chem. Phys.
105
,
4033
(
1996
).
9.
R.
Alimi
,
R. B.
Gerber
, and
V. A.
Apkarian
,
J. Chem. Phys.
89
,
174
(
1988
);
R.
Alimi
,
V. A.
Apkarian
, and
R. B.
Gerber
,
J. Chem. Phys.
98
,
331
(
1993
).
10.
R. B.
Gerber
and
A. I.
Krylov
, in
Reaction Dynamics in Clusters and Condensed Phase
, edited by
J.
Jortner
 et al (
Kluwer Academic
,
Netherlands
,
1994
), p.
509
.
11.
R.
Zadoyan
,
Z.
Li
,
C. C.
Martens
, and
V. A.
Apkarian
,
J. Chem. Phys.
101
,
6648
(
1994
);
Z.
Li
,
R.
Zadoyan
,
V. A.
Apkarian
, and
C. C.
Martens
,
J. Phys. Chem.
99
,
7435
(
1995
).
12.
I. H.
Gersonde
and
H.
Gabriel
,
J. Chem. Phys.
98
,
2094
(
1993
);
I. H.
Gersonde
,
S.
Hennig
, and
H.
Gabriel
,
J. Chem. Phys.
101
,
9558
(
1994
).
13.
F. G.
Amar
and
B. J.
Berne
,
J. Chem. Phys.
88
,
6720
(
1984
);
L.
Perera
and
F. G.
Amar
,
J. Chem. Phys.
90
,
7354
(
1989
).
14.
Q.
Liu
,
J.-K.
Wang
, and
A. H.
Zewail
,
Nature (London)
364
,
427
(
1993
);
J.-K.
Wang
,
Q.
Liu
, and
A. H.
Zewail
,
J. Phys. Chem.
99
,
11321
(
1995
).
15.
Z.
Li
,
J. Y.
Fang
, and
C. C.
Martens
,
J. Chem. Phys.
104
,
6919
(
1996
).
16.
A.
Goldberg
and
J.
Jortner
,
J. Chem. Phys.
107
,
8994
(
1997
).
17.
S.
Cui
,
R. E.
Johnson
, and
P.
Cummings
,
Surf. Sci.
207
,
186
(
1988
).
18.
A.
Borrman
and
C. C.
Martens
,
J. Chem. Phys.
102
,
1905
(
1995
).
19.
M.
Chergui
,
N.
Schwentner
, and
V.
Chandrasekharan
,
J. Chem. Phys.
89
,
1277
(
1988
).
21.
J.
Wörmer
,
R.
Karabach
,
M.
Joppien
, and
T.
Möller
,
J. Chem. Phys.
104
,
8269
(
1996
);
O.
Bjorneholm
,
F.
Federmann
,
F.
Fösing
, and
T.
Möller
,
Phys. Rev. Lett.
74
,
3017
(
1995
);
[PubMed]
O.
Bjorneholm
,
F.
Federmann
,
F.
Fösing
,
T.
Möller
, and
S.
Stampfli
,
J. Chem. Phys.
104
,
1876
(
1996
);
M.
Lengen
,
M.
Joppien
,
R.
von Pietrowski
, and
T.
Möller
,
Chem. Phys. Lett.
229
,
362
(
1994
).
22.
F.
Vigliotti
,
M.
Chergui
,
M.
Dickgiesser
, and
N.
Schwentner
,
Faraday Discuss.
108
,
139
(
1997
).
23.
J.
Goodman
and
L. E.
Brus
,
J. Chem. Phys.
67
,
933
(
1977
);
J.
Goodman
and
L. E.
Brus
,
J. Chem. Phys.
69
,
4083
(
1978
).
24.
M. T.
Portella-Oberli
,
C.
Jeannin
, and
M.
Chergui
,
Chem. Phys. Lett.
259
,
475
(
1996
).
25.
C.
Jeannin
,
M. T.
Portella-Orbeli
,
F.
Vigliotti
, and
M.
Chergui
,
Chem. Phys. Lett.
279
,
65
(
1997
).
26.
M.
Chergui
,
N.
Schwentner
, and
W.
Böhmer
,
J. Chem. Phys.
85
,
2472
(
1986
).
27.
L.
Bonacina
,
P.
Larrégaray
,
F.
van Mourik
, and
M.
Chergui
,
Phys. Rev. Lett.
95
,
015301
(
2005
).
28.
L.
Bonacina
,
P.
Larrégaray
,
F.
van Mourik
, and
M.
Chergui
,
J. Chem. Phys.
125
,
054507
(
2006
).
29.
S.
Jimenez
,
A.
Pasquarello
,
R.
Car
, and
M.
Chergui
,
Chem. Phys.
233
,
343
(
1998
).
30.
S.
Jimenez
,
M.
Chergui
,
G.
Rojas-Lorenzo
, and
J.
Rubayo-Soneira
,
J. Chem. Phys.
114
,
5264
(
2001
).
31.
H. H. W.
Thuis
,
S.
Stolte
,
J.
Reuse
,
J. J. H.
van den Biessen
, and
C. J. N.
van den Meidenberg
,
Chem. Phys.
52
,
211
(
1980
).
32.
K.
Tsuji
,
K.
Shibuya
, and
K.
Obi
,
J. Chem. Phys.
100
,
5441
(
1994
).
33.
F.
Vigliotti
,
L.
Bonacina
,
M.
Chergui
,
G.
Rojas-Lorenzo
, and
J.
Rubayo-Soneira
,
Chem. Phys. Lett.
362
,
31
(
2002
).
34.
G.
Rojas-Lorenzo
,
J.
Rubayo-Soneira
,
F.
Vigliotti
, and
M.
Chergui
,
Phys. Rev. B
67
,
115119
(
2003
).
35.
G.
Rojas-Lorenzo
,
J.
Rubayo-Soneira
,
S.
Fernández-Alberti
, and
M.
Chergui
,
J. Phys. Chem. A
107
,
8225
(
2003
).
36.
J. C.
Castro-Palacios
,
L.
Velázquez-Abad
,
G.
Rojas-Lorenzo
, and
J.
Rubayo-Soneira
,
Eur. Phys. J. D
25
,
149
(
2003
).
37.
J. C.
Castro-Palacios
,
L.
Velázquez-Abad
,
G.
Rojas-Lorenzo
, and
J.
Rubayo-Soneira
,
J. Mol. Struct.: THEOCHEM
730
,
255
(
2005
).
38.
J.
Rubayo-Soneira
,
J. C.
Castro-Palacios
, and
G.
Rojas-Lorenzo
,
Phys. Status Solidi B
242
,
1747
(
2005
).
39.
A.
García-Vela
,
J.
Rubayo-Soneira
,
G.
Delgado Barrio
, and
P.
Villarreal
,
J. Chem. Phys.
104
,
8405
(
1996
).
40.
P. J.
Knowles
,
C.
Hampel
, and
H.-J.
Werner
,
J. Chem. Phys.
99
,
5219
(
1993
).
41.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
82
,
5053
(
1985
).
42.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
43.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Saunders
,
Philadelphia
,
1976
).
44.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
45.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6769
(
1992
).
46.
T. H.
Dunning
, Jr.
and
P. J.
Hay
,
Modern Theoretical Chemistry
, edited by
H. F.
Schaefer
 III
(
Plenum
,
New York
,
1977
).
47.
H.-J.
Werner
,
P. J.
Knowles
,
R. D.
Amos
 et al, MOLPRO, a package of ab initio programs.
49.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
(
1982
).
50.
J. P.
Bergsma
,
P. H.
Berens
,
K. R.
Wilson
,
D. R.
Fredkin
, and
E. J.
Heller
,
J. Phys. Chem.
88
,
612
(
1984
).
51.
A. J.
Dobbyn
,
J. N. L.
Connor
,
N. A.
Besley
,
P. J.
Knowles
, and
G. C.
Schatz
,
Phys. Chem. Chem. Phys.
1
,
957
(
1999
).
You do not currently have access to this content.