The complex linear polarization propagator approach has been applied to the calculation of electronic circular dichroism spectra of 3R-chloro-1-butyne, 3R-methylcyclopentanone, 3S-methylcyclohexanone, 4R-1,1-dimethyl-[3]-(1,2)ferrocenophan-2-on, S-3,3,3,3-tetramethyl-1,1-spirobi[3H,2,1]-benzoxaselenole, and the fullerene C84. Using time-dependent Kohn-Sham density functional theory, it is shown that a direct and efficient evaluation of the circular dichroism spectrum can be achieved. The approach allows for the determination of the circular dichroism at an arbitrary wavelength thereby, in a common formulation and implementation, covering the visible, ultraviolet, and x-ray regions of the spectrum. In contrast to traditional methods, the entire manifold of excited states is taken into account in the calculation of the circular dichroism at a given wavelength.

You do not currently have access to this content.