Shapes and orientational deformation of a lipid monolayer domain have been analyzed taking into account the surface pressure, line tension, and electrostatic energy due to the spontaneous polarization and electric quadrupole density generated from the domain. The electrostatic energy due to the generation of spontaneous polarization and electric quadrupole density contributes to the formation of orientational deformation as the Frank elastic energy and spontaneous splay, respectively. Since the orientational configuration of the electric quadrupole density and in-plane spontaneous polarization is dependent on the molecular chirality, and the positive splay deformation of electric quadrupole density is induced by the spontaneous splay, the bending direction of in-plane spontaneous polarization depends on the chirality of constituent lipids. The electrostatic energy due to the in-plane spontaneous polarization is dependent on the orientational deformation of in-plane spontaneous polarization, and bends the domain shape towards the bending direction of the in-plane spontaneous polarization. It has been demonstrated that the chiral dependence of the domain shapes of lipid monolayers originated from the chiral dependence of orientational structure due to the electric quadrupole density.

1.
G. L.
Gaines
,
Insoluble Monolayers at Liquid-Gas Interfaces
(
Wiley-Interscience
,
New York
,
1966
).
2.
V. M.
Kaganer
,
H.
Mohwald
, and
P.
Dutta
,
Rev. Mod. Phys.
71
,
779
(
1999
).
3.
P. G.
de Gennes
and
J.
Prost
,
The Physics of Liquid Crystals
(
Clarendon
,
Oxford
,
1995
).
4.
M.
Iwamoto
and
C. X.
Wu
,
The Physical Properties of Organic Monolayers
, (
World Scientific
,
Singapore
,
2000
).
5.
A.
Tojima
,
T.
Manaka
, and
M.
Iwamoto
,
J. Chem. Phys.
115
,
9010
(
2001
).
6.
R.
Wagner
,
T.
Yamamoto
,
T.
Manaka
, and
M.
Iwamoto
,
Rev. Sci. Instrum.
76
,
083902
(
2005
).
7.
R. M.
Weis
and
H. M.
McConnell
,
Nature (London)
310
,
47
(
1984
).
8.
V. T.
Moy
,
D. J.
Keller
, and
H. M.
McConnell
,
J. Phys. Chem.
92
,
5233
(
1988
).
9.
K. Y. C.
Lee
and
H. M.
McConnell
,
J. Phys. Chem.
97
,
9532
(
1993
).
10.
M. F.
Schneider
,
D.
Andelman
, and
M.
Tanaka
,
J. Chem. Phys.
122
,
094717
(
2005
).
11.
S.
Henón
and
J.
Meunier
,
Rev. Sci. Instrum.
62
,
936
(
1991
).
12.
D.
Honig
and
D.
Möbius
,
J. Chem. Phys.
95
,
4590
(
1991
).
13.
G.
Weidemann
and
D.
Vollhardt
,
Colloids Surf., A
100
,
187
(
1995
).
14.
D.
Andelman
,
F.
Brochard
, and
J. F.
Joanny
,
J. Chem. Phys.
86
,
3673
(
1987
).
15.
H. M.
McConnell
and
V. T.
Moy
,
J. Phys. Chem.
92
,
4520
(
1988
).
16.
M.
Iwamoto
and
Z. C.
Ou-Yang
,
Phys. Rev. Lett.
93
,
206101
(
2004
).
17.
M.
Iwamoto
,
F.
Liu
, and
Z. C.
Ou-Yang
,
J. Chem. Phys.
125
,
224701
(
2006
).
18.
Z. C.
Ou-Yang
,
L. J.
Xing
, and
X. Y.
Zhang
,
Geometrical Methods in the Elastic Theory of Membranes in Liquid Crystal Phases
(
World Scientific
,
Singapore
,
1999
).
19.
P.
Krüger
and
M.
Lösche
,
Phys. Rev. E
62
,
7031
(
2000
).
20.
V. T.
Moy
,
D. J.
Keller
,
H. E.
Gaub
, and
H. M.
McConnell
,
J. Phys. Chem.
90
,
3198
(
1986
).
21.
T.
Yamamoto
,
T.
Manaka
, and
M.
Iwamoto
,
Thin Solid Films
(accepted).
22.
W.
Zhao
,
C. X.
Wu
,
M.
Iwamoto
, and
Z. C.
Ou-Yang
,
J. Chem. Phys.
110
,
12131
(
1999
).
23.
M.
Iwamoto
,
C. X.
Wu
, and
W.
Zhao
,
J. Chem. Phys.
113
,
2880
(
2000
).
24.
H. M.
McConnell
,
J. Phys. Chem.
94
,
4728
(
1990
).
25.
J. M.
Deutch
and
F. E.
Low
,
J. Phys. Chem.
96
,
7097
(
1992
).
26.
J. A.
Miranda
,
J. Phys. Chem.
103
,
1303
(
1999
).
You do not currently have access to this content.