The authors formulate a Car-Parrinello treatment for the density-functional-based tight-binding method with and without self-consistent charge corrections. This method avoids the numerical solution of the secular equations, the principal drawback for large systems if the linear combination of atomic orbital ansatz is used. The formalism is applicable to finite systems and for supercells using periodic boundary conditions within the Γ-point approximation. They show that the methodology allows the application of modern computational techniques such as sparse matrix storage and massive parallelization in a straightforward way. All present bottlenecks concerning computer time and consumption of memory and memory bandwidth can be removed. They illustrate the performance of the method by direct comparison with Born-Oppenheimer molecular dynamics calculations. Water molecules, benzene, the C60 fullerene, and liquid water have been selected as benchmark systems.

1.
J.
Choi
,
J.
Demmel
,
I.
Dhillon
,
J.
Dongarra
,
S.
Ostrouchov
,
A.
Petitet
,
K.
Stanley
,
D.
Walker
, and
R.
Whaley
,
Comput. Phys. Commun.
97
,
1
(
1996
).
2.
M.
Frigo
,
C. E.
Leiserson
, and
H.
Prokop
, in
Cache-Oblivious Algorithms
,
Proceedings of the 40th IEEE Symposium on the Foundations of Computer Science
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
1999
).
3.
I.
Dhillon
, A New O(n2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem (
University of California at Berkeley
,
Berkeley, CA
,
1997
).
4.
M.
Sternberg
,
G.
Galli
, and
T.
Frauenheim
,
Comput. Phys. Commun.
118
,
200
(
1999
).
5.
T.
Frauenheim
,
G.
Seifert
,
M.
Elstner
,
T.
Niehaus
,
C.
Köhler
,
M.
Amkreutz
,
M.
Sternberg
,
Z.
Hajnal
,
A.
Di Carlo
, and
S.
Suhai
,
J. Phys.: Condens. Matter
14
,
3015
(
2002
).
6.
7.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
22
,
2471
(
1985
).
8.
D.
Marx
and
J.
Hutter
, in
Modern Methods and Algorithms of Quantum Chemistry
, edited by
J.
Grotendorst
(
John von Neumann Institute for Computing
,
J¨¨ülich
,
2000
), Vol.
1
, p.
301
.
9.
D.
Porezag
,
T.
Frauenheim
,
T.
Köhler
,
G.
Seifert
, and
R.
Kaschner
,
Phys. Rev. B
51
,
12947
(
1995
).
10.
G.
Seifert
,
D.
Porezag
, and
T.
Frauenheim
,
Int. J. Quantum Chem.
58
,
185
(
1996
).
11.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
,
Phys. Rev. B
58
,
7260
(
1998
).
12.
M.
Rapacioli
,
T.
Heine
, and
G.
Seifert
(unpublished).
13.
M.
Tuckerman
and
M.
Parrinello
,
J. Chem. Phys.
101
,
1302
(
1994
).
14.
M.
Tuckerman
and
M.
Parrinello
,
J. Chem. Phys.
101
,
1316
(
1994
).
15.
J.
Hutter
,
M.
Tuckerman
, and
M.
Parrinello
,
J. Chem. Phys.
102
,
859
(
1995
).
16.
G.
Seifert
and
R.
Jones
,
Z. Phys. D: At., Mol. Clusters
20
,
77
(
1991
).
17.
B.
Hartke
and
E.
Carter
,
J. Chem. Phys.
97
,
6569
(
1992
).
18.
R.
Iftimie
,
J.
Thomas
, and
M.
Tuckerman
,
J. Chem. Phys.
120
,
2169
(
2004
).
19.
C.
Raynaud
,
L.
Maron
,
J.
Daudey
, and
F.
Jolibois
,
Phys. Chem. Chem. Phys.
6
,
4226
(
2004
).
20.
H.
Schlegel
,
J.
Millam
,
S.
Iyengar
,
G.
Voth
,
A.
Daniels
,
G.
Scuseria
, and
M.
Frisch
,
J. Chem. Phys.
114
,
9758
(
2001
).
21.
G.
Pastore
,
E.
Smargiassi
, and
F.
Buda
,
Phys. Rev. A
44
,
6334
(
1991
).
23.
J.
Ryckaert
,
G.
Cicotti
, and
H.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
24.
W.
Press
,
B.
Flannery
,
S.
Teukolsky
, and
W.
Vetterling
,
Numerical Recipes: The Art of Scientific Computing
(
Cambridge University Press
,
Cambridge
,
1985
).
25.
W.
Koch
and
M. C.
Holthausen
,
A Chemist’s Guide to Density Functional Theory
, 2nd ed. (
Wiley-VCH
,
Weinheim
,
2001
), p.
45
.
26.
T.
Mineva
and
T.
Heine
,
Int. J. Quantum Chem.
106
,
1396
(
2006
).
27.
P.
Tangney
and
S.
Scandolo
,
J. Chem. Phys.
116
,
14
(
2002
).
28.
P.
Tangney
,
J. Chem. Phys.
124
,
044111
(
2006
).
29.
S.
Patchkovskii
, Ph.D. Thesis, 1997, p. 21.
You do not currently have access to this content.