The electronic structures and the halogen inductive effects on the acetate anion were investigated in XCH2COO(X=F,Cl,Br) by photoelectron spectroscopy (PES) and ab initio calculations. The PES spectra indicated that the electron binding energies increased in the order of F<Cl<Br, contradictory to the known electron affinities of the halogen atoms. The measured adiabatic detachment energies (ADEs) are 3.80, 3.93, and 3.97eV and the vertical detachment energies (VDEs) are 3.96, 4.10, and 4.13eV for the F-, Cl-, and Br-substituted species, respectively. Structures of these anions and their neutral species were obtained by full geometry optimizations at the CCSD(T)/aug-cc-pVDZ level of theory, and final energies were calculated at the CCSD(T)/aug-cc-pVTZ level. The calculated ADEs (3.76, 3.88, and 3.91eV for F, Cl, Br, respectively) and VDEs (4.14, 4.29, and 4.32eV, respectively) are in good agreement with the corresponding experimental results. Theoretical analysis shows that the increase of ADE/VDE from F to Cl to Br is related to that the matching of the p orbital energy of X with the COO group is better for Br than that of Cl and F. For comparison, additional calculations were carried out to include halogen substituted ethanol, XCH2CH2OH. Similar trend on electron binding energies was also found. In contrast, the ionization potentials (IPs) of both XCH2COOH and XCH2CH2OH decrease in the order of F>Cl>Br. These systematic changes of detachment energy and IPs were explained by examining the charge redistributions upon detaching electrons.

1.
P. S.
Drzaic
,
J.
Marks
, and
J. I.
Brauman
,
Gas-Phase Ion Chemistry
(
Academic
,
New York
,
1984
).
2.
K. M.
Ervin
,
Chem. Rev. (Washington, D.C.)
101
,
391
(
2001
).
3.
K.
Hiraoka
,
R.
Yamdagni
, and
P.
Kebarle
,
J. Am. Chem. Soc.
95
,
6833
(
1973
).
4.
G.
Caldwell
,
R.
Renneboog
, and
P.
Kebarle
,
Can. J. Chem.
67
,
611
(
1989
).
5.
X. B.
Wang
,
H. K.
Woo
, and
L. S.
Wang
,
J. Chem. Phys.
123
,
051106
(
2005
).
6.
X. B.
Wang
,
H. K.
Woo
,
B.
Kiran
, and
L. S.
Wang
,
Angew. Chem., Int. Ed.
44
,
2
(
2005
).
7.
H. K.
Woo
,
X. B.
Wang
,
B.
Kiran
, and
L. S.
Wang
,
J. Phys. Chem. A
109
,
11395
(
2005
).
8.
L. S.
Wang
,
C. F.
Ding
,
X. B.
Wang
, and
S. E.
Barlow
,
Rev. Sci. Instrum.
70
,
1957
(
1999
).
9.
Z.
Huang
,
W.
Yu
, and
Z.
Lin
,
J. Mol. Struct.: THEOCHEM
758
,
193
(
2005
).
10.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
11.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
12.
K.
Mazurkiewicz
,
R. A.
Bachorz
,
M.
Gutowski
, and
J.
Rak
,
J. Phys. Chem. B
110
,
24696
(
2006
).
13.
D. Y.
Zubarev
,
A. N.
Alexandrova
,
A. I.
Boldyrev
,
L. F.
Cui
,
X.
Li
, and
L. S.
Wang
,
J. Chem. Phys.
124
,
124305
(
2006
).
14.
M.
Zhang
,
Z.
Huang
, and
Z.
Lin
,
J. Chem. Phys.
122
,
134313
(
2005
).
15.
H.-J.
Werner
,
P. J.
Knowles
,
R. D.
Amos
 et al., MOLPRO-2002, a package of ab initio programs written at the Universitat Stuttgart, Stuttgart, Germany, and the
University of Birmingham
, Birmingham, United Kingdom,
2002
.
16.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
17.
D. J.
Tozer
and
N. C.
Handy
,
J. Chem. Phys.
109
,
10180
(
1998
).
18.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN98, Revision A.9,
Gaussian, Inc.
, Pittsburgh, PA,
1998
.
19.
X. B.
Wang
,
H. K.
Woo
,
L. S.
Wang
,
B.
Minofar
, and
P.
Jungwirth
,
J. Phys. Chem. A
110
,
5047
(
2006
).
20.
See EPAPS Document No. E-JCPSA6-126-014709 for the geometric parameters of the three halogen substituted XCH2COO anions and their neutral partners. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
21.
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
,
Chem. Rev. (Washington, D.C.)
88
,
899
(
1988
).
22.
J. C.
Rienstra-Kiracofe
,
G. S.
Tschumper
,
H. F.
Schaefer
 III
,
S.
Nandi
, and
G. B.
Ellison
,
Chem. Rev. (Washington, D.C.)
102
,
231
(
2002
).

Supplementary Material

You do not currently have access to this content.