This article investigates the performance of five commonly used density functionals, B3LYP, BP86, PBE0, PBE, and BLYP, for studying diatomic molecules consisting of a first row transition metal bonded to H, F, Cl, Br, N, C, O, or S. Results have been compared with experiment wherever possible. Open-shell configurations are found more often in the order PBE0>B3LYP>PBEBP86>BLYP. However, on average, 58 of 63 spins are correctly predicted by any functional, with only small differences. BP86 and PBE are slightly better for obtaining geometries, with errors of only 0.020Å. Hybrid functionals tend to overestimate bond lengths by a few picometers and underestimate bond strengths by favoring open shells. Nonhybrid functionals usually overestimate bond energies. All functionals exhibit similar errors in bond energies, between 42 and 53kJmol. Late transition metals are found to be better modeled by hybrid functionals, whereas nonhybrid functionals tend to have less of a preference. There are systematic errors in predicting certain properties that could be remedied. BLYP performs the best for ionization potentials studied here, PBE0 the worst. In other cases, errors are similar. Finally, there is a clear tendency for hybrid functionals to give larger dipole moments than nonhybrid functionals. These observations may be helpful in choosing and improving existing functionals for tasks involving transition metals, and for designing new, improved functionals.

1.
P.
Geerlings
,
F.
De Proft
, and
W.
Langenaeker
,
Chem. Rev. (Washington, D.C.)
103
,
1793
(
2003
).
2.
C. W.
Bausclicher
,
Chem. Phys. Lett.
246
,
40
(
1995
).
3.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
4.
P. E. M.
Siegbahn
,
JBIC, J. Biol. Inorg. Chem.
11
,
695
(
2006
).
5.
G.
Frenking
and
N.
Frohlich
,
Chem. Rev. (Washington, D.C.)
100
,
717
(
2000
).
6.
P. E. M.
Siegbahn
and
M. R. A.
Blomberg
,
Chem. Rev. (Washington, D.C.)
100
,
421
(
2000
).
7.
T.
Ziegler
,
Chem. Rev. (Washington, D.C.)
91
,
651
(
1991
).
8.
F.
Neese
,
JBIC, J. Biol. Inorg. Chem.
11
,
702
(
2006
).
9.
J. F.
Harrison
,
Chem. Rev. (Washington, D.C.)
100
,
679
(
2000
).
10.
K. P.
Jensen
and
U.
Ryde
,
J. Phys. Chem. A
107
,
7539
(
2003
).
11.
J.
Li
,
G.
Schreckenbach
, and
T.
Ziegler
,
J. Am. Chem. Soc.
117
,
486
(
1995
).
12.
A. J.
Merer
,
Annu. Rev. Phys. Chem.
40
,
407
(
1989
).
13.
S.
Grimme
,
Angew. Chem., Int. Ed.
45
,
4460
(
2006
).
14.
L.
Gagliardi
,
B. O.
Roos
,
M.
Meuwly
 et al,
Faraday Discuss.
124
,
85
(
2003
).
15.
M.
Buhl
and
H.
Kabrede
,
J. Chem. Theory Comput.
2
,
1282
(
2006
).
16.
N. E.
Schultz
,
Y.
Zhao
, and
D. G.
Truhlar
,
J. Phys. Chem.
109
,
11127
(
2005
).
17.
M. C.
Holthausen
,
J. Comput. Chem.
26
,
1505
(
2005
).
18.
C. J.
Barden
,
J. C.
Rienstra-Kiracofe
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
113
,
690
(
2000
).
19.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
20.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
21.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
22.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
23.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
24.
C. T.
Lee
,
W. T.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
25.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
26.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
27.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
28.
A.
Schafer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
29.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 98,
Revision A.11
,
Gaussian, Inc.
, Pittsburgh, PA,
2001
.
30.
31.
Handbook of Chemistry and Physics
, 87th ed., edited by
D. R.
Lide
(
CRC
,
Boca Raton, FL
,
2006
).
32.
A.
Boldyrev
and
J.
Simons
,
Periodic Table of Diatomic Molecules
(
Wiley
,
New York
,
1997
).
33.
G. H.
Jeung
and
J.
Koutecky
,
J. Chem. Phys.
88
,
3747
(
1988
).
34.
C. W.
Bauschlicher
and
P. E. M.
Siegbahn
,
Chem. Phys. Lett.
104
,
331
(
1984
).
35.
M.
Barnes
,
A. J.
Merer
, and
G. F.
Metha
,
J. Chem. Phys.
103
,
8360
(
1995
).
36.
A. C.
Borin
,
J. P.
Gobbo
, and
B. O.
Roos
,
Chem. Phys. Lett.
418
,
311
(
2006
).
37.
P.
Pyykko
,
Chem. Rev. (Washington, D.C.)
88
,
563
(
1988
).
38.
C. W.
Bausclicher
, Jr.
and
S. P.
Walch
,
J. Chem. Phys.
76
,
4560
(
1982
).
39.
See EPAPS Document No. E-JCPSA6-126-305701 for additional information, including the absolute values of calculated BDEs, the BDEs obtained at the B3LYP/QZVPP level, and spin densities. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).

Supplementary Material

You do not currently have access to this content.