We determine the second, third, and fourth virial coefficients appearing in the density expansion of the osmotic pressure Π of a monodisperse polymer solution in good-solvent conditions. Using the expected large-concentration behavior, we extrapolate the low-density expansion outside the dilute regime, obtaining the osmotic pressure for any concentration in the semidilute region. Comparison with field-theoretical predictions and experimental data shows that the obtained expression is quite accurate. The error is approximately 1%–2% below the overlap concentration and rises at most to 5%–10% in the limit of very large polymer concentrations.

1.
P. G.
de Gennes
,
Phys. Lett. A
38A
,
339
(
1972
).
2.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca, NY
,
1979
).
3.
K. F.
Freed
,
Renormalization Group Theory of Macromolecules
(
Wiley
,
New York
,
1987
).
4.
L.
Schäfer
,
Excluded Volume Effects in Polymer Solutions
(
Springer Verlag
,
Berlin
,
1999
).
5.
At present the most accurate estimates of ν are ν=0.58758±0.00007 (Ref. 10), ν=0.5874±0.0002 [
T.
Prellberg
,
J. Phys. A
34
,
L599
(
2001
)],
and ν=0.58765±0.00020 [
H.-P.
Hsu
,
W.
Nadler
, and
P.
Grassberger
,
Macromolecules
37
,
4658
(
2004
)].
For an extensive list of results, see
A.
Pelissetto
and
E.
Vicari
,
Phys. Rep.
368
,
549
(
2002
).
6.

In experimental works the virial coefficients are usually defined from the expansion of ZM in terms of the weight concentration ρ, ZM=1M+nBn+1exptρn, where M is the molar mass of the polymer. The coefficients Bnexpt are related to those we have defined by Bnexpt=NAn1BnMn, where NA is the Avogadro number.

7.
A.
Pelissetto
and
J.-P.
Hansen
,
J. Chem. Phys.
122
,
134904
(
2005
).
8.
B.
Li
,
N.
Madras
, and
A. D.
Sokal
,
J. Stat. Phys.
80
,
661
(
1995
).
9.
B. G.
Nickel
,
Macromolecules
24
,
1358
(
1991
).
10.
P.
Belohorec
and
B. G.
Nickel
,
Guelph University Report
,
1997
(unpublished).
11.
C.
Domb
and
G. S.
Joyce
,
J. Phys. C
5
,
956
(
1972
).
12.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic
,
New York
,
2006
).
13.
Estimates of w*, although with a large error, have also been obtained in
P.
Grassberger
,
P.
Sutter
, and
L.
Schäfer
,
J. Phys. A
30
,
7039
(
1997
): the analysis of the MC data gives ew*0.4, while combining MC data and field theory they obtain ew*0.47.
14.
M.
Lal
,
Mol. Phys.
17
,
57
(
1969
).
15.
B.
MacDonald
,
N.
Jan
,
D. L.
Hunter
, and
M. O.
Steinitz
,
J. Phys. A
18
,
2627
(
1985
).
16.
N.
Madras
and
A. D.
Sokal
,
J. Stat. Phys.
50
,
109
(
1988
).
17.
A. D.
Sokal
, in
Monte Carlo and Molecular Dynamics Simulations in Polymer Science
, edited by
K.
Binder
(
Oxford University Press
,
Oxford
,
1995
).
18.
T.
Kennedy
,
J. Stat. Phys.
106
,
407
(
2002
).
19.
S.
Caracciolo
,
G.
Parisi
, and
A.
Pelissetto
,
J. Stat. Phys.
77
,
519
(
1994
).
20.
In Ref. 7 the authors also report estimates of the contribution I3 to the third virial coefficient. The contribution T1 (that is small but not negligible) was not included and thus those results provide only an approximate estimate of the universal constant A3*. The contribution T1 is also neglected in
K.
Shida
,
K.
Ohno
,
Y.
Kawazoe
, and
Y.
Nakamura
,
J. Chem. Phys.
117
,
9942
(
2002
), and in the expression reported in Ref. 8.
21.
K.
Shida
,
K.
Ohno
,
M.
Kimura
, and
Y.
Kawazoe
,
Comput. Theor. Polym. Sci.
10
,
281
(
2000
).
22.
J.
des Cloizeaux
and
I.
Noda
,
Macromolecules
15
,
1505
(
1982
).
23.
J. F.
Douglas
and
K. F.
Freed
,
Macromolecules
18
,
201
(
1985
).
24.

In Sec. 17.3.2 of Ref. 4 field theory is used to obtain a prediction for the virial expansion in the exponential ensemble. In terms of the variable ŝ=4πcRg3(3×7.95), Z=1+1.433ŝ+1.065ŝ20.648ŝ3+. This implies Z=1+0.755cRg3+0.295(cRg3)20.095(cRg3)3+. Note that also for this polydisperse case field theory predicts a negative fourth virial coefficient.

25.
G.
Merkle
,
W.
Burchard
,
P.
Lutz
,
K. F.
Freed
, and
J.
Gao
,
Macromolecules
26
,
2736
(
1993
).
26.

Eq. (17.52) of Ref. 4 gives the following expression for Z: Z=1+1.314Φp(H1H2)0.309, H1=1+2.15Φp+1.00Φp2, and H2=1+0.51Φp. The variable ŝ used in Ref. 4 is related to Φp by Φp=1.169ŝ (see Sec. 13.3.2). For Φp it predicts Z1.61Φp1.309.

27.
C. I.
Addison
,
A. A.
Louis
, and
J. P.
Hansen
,
J. Chem. Phys.
121
,
612
(
2004
).
28.
I.
Noda
,
N.
Kato
,
T.
Kitano
, and
M.
Nasagawa
,
Macromolecules
14
,
668
(
1981
).
29.
D. E.
Knuth
,
The Art of Computer Programming
,
Seminumerical Algorithms
Vol.
2
, 3rd ed. (
Addison-Wesley
,
Reading, MA
,
1997
).
30.
G.
Parisi
and
F.
Rapuano
,
Phys. Lett. B
157
,
301
(
1985
).
You do not currently have access to this content.