The wetting behavior of alkanes of medium chain length (e.g., pentane, hexane, and heptane) on water is more complex than the usually observed first-order wetting transition from partial to complete wetting by showing a sequence of two transitions. In this sequential-wetting scenario, a first-order transition from a microscopically thin to a mesoscopically thick layer of liquid on the substrate surface is followed by a continuous divergence of the film thickness upon increase of the temperature. This critical transition to complete wetting at Tw,c is solely determined by long-range interactions between substrate and adsorbate, which are well-described by Dzyaloshinskii-Lifshitz-Pitaevskii [Adv. Phys.10, 165 (1961)] theory in terms of the static dielectric constants and the refractive indices of the media involved. The first-order thin-thick transition, however, which occurs at a lower temperature Tw,1, results from an interplay of short-range and long-range forces and is notoriously more difficult to describe because a satisfactory theory of the short-range interactions between substrate and adsorbate is still missing. The approach presented in this paper attempts to account for the short-range interactions in an effective way: Within a Cahn-type [J. Chem. Phys.66, 3667 (1977)] theory that has been augmented for long-range interactions and modified to treat the first layer of adsorbed molecules in a lattice-gas approach, the contact energy is deduced from the surface pressure, which in turn is calculated using a two-dimensional van der Waals equation of state and an expression for the Henry’s law constant that was derived by Hirasaki [J. Adhes. Sci. Technol.7, 285 (1993)]. The method uses only the dielectric properties of the isolated bulk media and simple assumptions on the size and the shape of the adsorbed alkane molecules and leads to satisfactory results for the transition temperatures Tw,1 and Tw,c.

1.
J. W.
Cahn
,
J. Chem. Phys.
66
,
3667
(
1977
).
2.
C.
Ebner
and
W. F.
Saam
,
Phys. Rev. Lett.
38
,
1486
(
1977
).
3.
J. W.
Cahn
and
J. E.
Hilliard
,
J. Chem. Phys.
28
,
258
(
1958
).
4.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Clarendon
,
Oxford
,
1982
).
5.
H.
Gouin
,
J. Phys. Chem. B
102
,
1212
(
1998
).
6.
K.
Ragil
,
D.
Bonn
,
D.
Broseta
, and
J.
Meunier
,
J. Chem. Phys.
105
,
5160
(
1996
).
7.
F.
Hauxwell
and
R. H.
Ottewill
,
J. Colloid Interface Sci.
34
,
473
(
1970
).
8.
C.
Jho
,
D.
Nealon
,
S.
Shogbola
, and
A.
King
,
J. Colloid Interface Sci.
65
,
141
(
1978
).
9.
C.
Del Cerro
and
G. J.
Jameson
,
J. Colloid Interface Sci.
78
,
362
(
1980
);
T.
Takii
and
Y. H.
Mori
,
J. Colloid Interface Sci.
161
,
31
(
1993
);
S.
Akatsuka
,
H.
Yoshigiwa
, and
Y. H.
Mori
,
J. Colloid Interface Sci.
172
,
335
(
1995
).
10.
K.
Ragil
,
J.
Meunier
,
D.
Broseta
,
J. O.
Indekeu
, and
D.
Bonn
,
Phys. Rev. Lett.
77
,
1532
(
1996
).
11.
H.
Nakanishi
and
M. E.
Fisher
,
Phys. Rev. Lett.
49
,
1565
(
1982
).
12.
P. G.
de Gennes
,
Rev. Mod. Phys.
57
,
827
(
1985
).
13.
E.
Brézin
,
B. I.
Halperin
, and
S.
Leibler
,
Phys. Rev. Lett.
50
,
1387
(
1983
).
14.
D. S.
Fisher
and
D. A.
Huse
,
Phys. Rev. B
32
,
247
(
1985
).
15.
R.
Lipowsky
and
D. M.
Kroll
,
Phys. Rev. Lett.
52
,
2303
(
1984
).
16.
S.
Dietrich
and
M.
Schick
,
Phys. Rev. B
31
,
4718
(
1985
).
17.
M. P.
Nightingale
,
W. F.
Saam
, and
M.
Schick
,
Phys. Rev. B
30
,
3830
(
1984
).
18.
V. B.
Shenoy
and
W. F.
Saam
,
Phys. Rev. Lett.
75
,
4086
(
1995
).
19.
J. O.
Indekeu
,
K.
Ragil
,
D.
Bonn
,
D.
Broseta
, and
J.
Meunier
,
J. Stat. Phys.
95
,
1009
(
1999
).
20.
J. O.
Indekeu
,
K.
Ragil
,
D.
Broseta
,
D.
Bonn
, and
J.
Meunier
, in
New Approaches to Problems in Liquid State Theory
,
NATO ASI, Series C: Mathematical and Physical Sciences
edited by
C.
Caccamo
,
J. P.
Hansen
, and
G.
Stell
(
Kluwer
,
Dordrecht
,
1999
), Vol.
529
, pp.
337
344
.
21.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic
,
London
,
1985
).
22.
E.
Bertrand
,
H.
Dobbs
,
D.
Broseta
,
J.
Indekeu
,
D.
Bonn
, and
J.
Meunier
,
Phys. Rev. Lett.
85
,
1282
(
2000
).
23.
H.
Dobbs
,
J. Chem. Phys.
114
,
468
(
2001
).
24.
V. C.
Weiss
and
B.
Widom
,
Physica A
292
,
137
(
2001
).
25.
V. C.
Weiss
and
J. O.
Indekeu
,
J. Chem. Phys.
118
,
10741
(
2003
).
26.
G. J.
Hirasaki
,
J. Adhes. Sci. Technol.
7
,
285
(
1993
).
27.
S.
Rafaï
,
D.
Bonn
,
E.
Bertrand
,
J.
Meunier
,
V. C.
Weiss
, and
J. O.
Indekeu
,
Phys. Rev. Lett.
92
,
245701
(
2004
).
28.
V. C.
Weiss
and
J. O.
Indekeu
,
Fluid Phase Equilib.
222–223
,
269
(
2004
).
29.
H. C.
van Ness
,
Ind. Eng. Chem. Fundam.
8
,
464
(
1969
).
30.
D.-Y.
Peng
and
D. B.
Robinson
,
Ind. Eng. Chem. Fundam.
15
,
59
(
1976
).
31.
H.
Dobbs
,
Langmuir
15
,
2586
(
1999
).
32.
C.
Zhou
,
F.
Hall
,
K. A. M.
Gasem
, and
R. L.
Robinson
 Jr.
,
Ind. Eng. Chem. Res.
33
,
1280
(
1994
).
33.
H. K.
Payne
,
G. A.
Sturdevant
, and
T. W.
Leland
,
Ind. Eng. Chem. Fundam.
7
,
363
(
1968
).
34.
P.
Jedlovszky
,
I.
Varga
, and
T.
Gilanyi
,
J. Chem. Phys.
119
,
1731
(
2003
).
35.
T.
Boublik
,
Mol. Phys.
29
,
421
(
1975
).
36.
J.
Mahanty
and
B. W.
Ninham
,
Dispersion Forces
(
Academic
,
London
,
1976
).
37.
N.
Shahidzadeh
,
D.
Bonn
,
K.
Ragil
,
D.
Broseta
, and
J.
Meunier
,
Phys. Rev. Lett.
80
,
3992
(
1998
).
38.
R.
Evans
,
Adv. Phys.
28
,
143
(
1979
).
39.
B. S.
Carey
,
L. E.
Scriven
, and
H. T.
Davis
,
AIChE J.
24
,
1076
(
1978
).
40.
A.
Maritan
,
G.
Langie
, and
J. O.
Indekeu
,
Physica A
170
,
326
(
1991
).
41.
I. E.
Dzyaloshinskii
,
E. M.
Lifshitz
, and
L. P.
Pitaevskii
,
Adv. Phys.
10
,
165
(
1961
).
42.
E.
Bertrand
, Ph.D. thesis,
Université Pierre et Marie Curie
,
2000
.
43.
E.
Bertrand
,
D.
Bonn
,
H.
Kellay
,
B. P.
Binks
, and
J.
Meunier
,
Europhys. Lett.
55
,
827
(
2001
).
You do not currently have access to this content.