A new kind of single-electron lithium bonding complexes H3CLiY (Y=H, F, OH, CN, NC, and CCH) was predicted and characterized in the present paper. Their geometries (C3v) with all real harmonic vibrational frequencies were obtained at the MP2/aug-cc-pVTZ level. For each H3CLiY complex, single-electron Li bond is formed between the unpaired electron of CH3 radical and positively charged Li atom of LiY molecule. Due to the formation of the single-electron Li bond, the C–H bonds of the CH3 radical bend opposite to the LiY molecule and the LiY bond elongates. Abnormally, the three H3CLiY (Y=CN, NC, and CCH) complexes exhibit blueshifted LiY stretching frequencies along with the elongated LiY bonds. Natural bond orbital analyses suggest ca. 0.02 electron transfer from the methyl radical (CH3) to the LiY moiety. In the single occupied molecular orbitals of the H3CLiY complexes, it is also seen that the electron could of the CH3 radical approaches the Li atom. The single-electron Li bond energies are 5.206.94kcalmol for the H3CLiY complexes at the CCSD(T)aug-cc-pVDZ+BF (bond functions) level with counterpoise procedure. By comparisons with some related systems, it is concluded that the single-electron Li bonds are stronger than single-electron H bonds, and weaker than conventional Li bonds and π-Li bonds.

1.
S.
Scheiner
,
Hydrogen Bonding
(
Oxford University Press
,
New York
,
1997
).
2.
R.
Custelcean
and
J. E.
Jackson
,
Chem. Rev. (Washington, D.C.)
101
,
1963
(
2001
).
3.
H.
Cybulski
,
E.
Tyminska
, and
J.
Sadlej
,
ChemPhysChem
7
,
629
(
2006
).
4.
P.
Hobza
and
Z.
Havlas
,
Chem. Rev. (Washington, D.C.)
100
,
4253
(
2000
).
5.
K. S.
Kim
,
P.
Tarakeshwer
, and
J. Y.
Lee
,
Chem. Rev. (Washington, D.C.)
100
,
4145
(
2000
).
6.
S. S.
Xantheas
,
J. Am. Chem. Soc.
117
,
10373
(
1995
).
7.
Z. R.
Li
,
D.
Wu
,
Z. S.
Li
,
X. R.
Huang
,
F. M.
Tao
, and
C. C.
Sun
,
J. Phys. Chem. A
105
,
1163
(
2001
).
8.
X. Y.
Hao
,
Z. R.
Li
,
D.
Wu
,
Y.
Wang
,
Z. S.
Li
, and
C. C.
Sun
,
J. Chem. Phys.
118
,
83
(
2003
).
9.
T.
Tsurusawa
and
S.
Iwata
,
J. Chem. Phys.
112
,
5705
(
2000
).
10.
D. N.
Shigorin
,
Spectrochim. Acta
14
,
169
(
1959
).
11.
P. A.
Kollman
,
J. F.
Liebman
, and
L. C.
Allen
,
J. Am. Chem. Soc.
92
,
1142
(
1970
).
12.
B. S.
Ault
and
G. C.
Pimentel
,
J. Phys. Chem.
79
,
621
(
1975
).
13.
A. B.
Sannigrahi
,
T.
Kar
,
B. G.
Niyogi
,
P.
Hobza
, and
P. v. R.
Schleyer
,
Chem. Rev. (Washington, D.C.)
90
,
1061
(
1990
).
14.
M. M.
Szczesniak
and
H.
Ratajczak
,
Chem. Phys. Lett.
74
,
243
(
1980
).
15.
K. N.
Houk
,
N. G.
Rondan
,
P. v. R.
Schleyer
,
E.
Kaufmann
, and
T.
Clark
,
J. Am. Chem. Soc.
107
,
2821
(
1985
).
16.
S. S. C.
Ammal
and
P.
Venuvanalingam
,
J. Chem. Phys.
109
,
9820
(
1998
).
17.
B. Q.
Wang
,
Z. R.
Li
,
D.
Wu
,
X. Y.
Hao
,
R. J.
Li
, and
C. C.
Sun
,
Chem. Phys. Lett.
375
,
91
(
2003
).
18.
H.
Tachikawa
,
J. Phys. Chem. A
102
,
7065
(
1998
).
19.
M.
Igarashi
,
T.
Ishibashi
, and
H.
Tachikawa
,
J. Mol. Struct.: THEOCHEM
594
,
61
(
2002
).
20.
Y.
Chen
,
E.
Tshkuikow-Roux
, and
A.
Rauk
,
J. Phys. Chem.
95
,
9832
(
1991
).
21.
M.
Solimannejad
and
M. E.
Alikhani
,
Chem. Phys. Lett.
406
,
351
(
2005
).
22.
E. Y.
Misochko
,
V. A.
Benderskii
,
A. U.
Goldschleger
,
A. V.
Akimov
, and
A. F.
Schestakov
,
J. Am. Chem. Soc.
117
,
11997
(
1995
).
23.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
2975
(
1994
).
24.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
25.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
26.
J. E.
Carpenter
and
F.
Weinhold
,
J. Mol. Struct.: THEOCHEM
169
,
41
(
1988
).
27.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
,
J. Chem. Phys.
83
,
735
(
1985
).
28.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
29.
F. M.
Tao
and
W.
Klemperer
,
J. Chem. Phys.
101
,
1129
(
1994
).
30.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 03, Revision C.02,
Gaussian, Inc.
, Wallingford, CT,
2004
.
31.
Y.
Feng
,
L.
Liu
,
J. T.
Wang
,
X. S.
Li
, and
Q. X.
Guo
,
Chem. Commun. (Cambridge)
2004
,
88
.
32.
S.
Hix
,
M. B.
Kadiis
,
R. P.
Mason
, and
O.
Augusto
,
Chem. Res. Toxicol.
13
,
1056
(
2000
).
33.
X. S.
Li
,
L.
Liu
, and
H. B.
Schlegel
,
J. Am. Chem. Soc.
124
,
9639
(
2002
).
34.
B.
Braida
,
S.
Hazebroucq
, and
P. C.
Hiberty
,
J. Am. Chem. Soc.
124
,
2371
(
2002
).
35.
B.
Braida
,
D.
Lauvergnat
, and
P. C.
Hiberty
,
J. Chem. Phys.
115
,
90
(
2001
).
36.
T.
Clark
,
J. Am. Chem. Soc.
110
,
1672
(
1988
).
37.
W. J.
Bouma
and
L.
Radom
,
J. Am. Chem. Soc.
107
,
345
(
1985
).
38.
P. L. A.
Popelier
,
J. Phys. Chem. A
102
,
1873
(
1998
).
39.
U.
Kock
and
P. L. A.
Popelier
,
J. Phys. Chem.
99
,
9747
(
1995
).
You do not currently have access to this content.