Helical polymers often exhibit pronounced chirality recognition during crystallization. By molecular dynamics simulation, we have already shown that the helical polymers crystallize with or without marked chirality selection depending on structural details of the polymer molecules. We have there classified the helical polymers into two categories: the bare helices made of only backbone atoms which show rather tolerant chirality selection, and the general helices with large side groups showing strict chirality recognition. Polymer crystallization is in general largely hampered and retarded by slow dynamics of the entangled chains, and therefore short helical oligomers are very suitable models for studying the chiral crystallization. We here report on molecular simulations of crystallization in the bare helical oligomer molecules by the use of Monte Carlo and molecular dynamics simulations. First we confirm the low temperature chiral crystal phase and the reversible order-disorder transition. We also observe frequent inversions of the helical sense, and the helix reversal defects propagating along the chains. Then we investigate crystallization from the melt into the chiral crystal phase. We find that the crystallization rate depends very sensitively on the degree of undercooling. The crystallization is found to be the first order transition that conforms well to the traditional picture of crystal growth in small molecules. Even when the crystallization directly into the chiral crystal phase is conducted, marked chirality selections are not observed at the early stage of crystallization; the chains adhere to the crystal surfaces selecting their helical senses rather at random resulting in racemic crystallites. The isothermal crystallization for a sufficiently long time, however, yields lamellar crystals composed of well-developed chiral domains, the growth of which seems to be accomplished through the transition back into the ordered chiral crystal phase.

1.
B.
Wunderlich
,
Macromolecular Physics
(
Academic
,
New York
,
1976
), Vols.
1–3
.
2.
L.
Mandelkern
,
Crystallization of Polymers
(
Cambridge University Press
,
Edinburgh
,
2002
), Vols.
1–2
.
3.
F. C.
Frank
,
Faraday Discuss. Chem. Soc.
68
,
7
(
1979
).
4.
K.
Armistead
and
K. G.
Goldbeck-Wood
,
Adv. Polym. Sci.
100
,
219
(
1992
).
5.
J. Macromol. Sci., Phys.
42
,
403
(
2003
), special issue on the International Symposium on Polymer Crystallization.
6.
Polymer
46
,
8661
(
2005
), special issue of polymer to honor the memory of John D. Hoffman.
7.
Interphases and Mesophase in Polymer Crystallization
, Advances in Polymer Science Vols.
180
,
181
, and
191
, edited by
G.
Allegra
(
Springer
,
Berlin
,
2005
).
8.
M.
Muthukumar
,
Adv. Chem. Phys.
128
,
1
(
2004
).
9.
T. A.
Kavassalis
and
P. R.
Sundararajan
,
Macromolecules
26
,
4144
(
1993
).
10.
C.
Liu C
and
M.
Muthukumar
,
J. Chem. Phys.
109
,
2536
(
1998
).
11.
P.
Welch
and
M.
Muthukumar
,
Phys. Rev. Lett.
87
,
218302
(
2001
).
12.
H.
Meyer
and
F. J.
Mueller-Plathe
,
J. Chem. Phys.
115
,
7807
(
2001
).
13.
H.
Meyer
and
F. J.
Mueller-Plathe
,
Macromolecules
35
,
1241
(
2002
).
14.
W.
Hu
,
D.
Frenkel
, and
V. B. F.
Mathot
,
Macromolecules
36
,
549
(
2003
).
15.
T.
Miura
,
R.
Kishi
,
M.
Mikami
, and
Y.
Tanabe
,
Phys. Rev. E
63
,
061807
(
2001
).
16.
K.
Esselink
,
P. A. J.
Hilbers
, and
B. W. H.
van Beest
,
J. Chem. Phys.
101
,
9033
(
1994
).
17.
H.
Takeuchi
,
J. Chem. Phys.
109
,
5614
(
1998
).
18.
R. H.
Gee
and
L. E.
Fried
,
J. Chem. Phys.
118
,
3827
(
2003
).
19.
R. H.
Gee
,
N.
Laceviv
, and
L. E.
Fried
,
Nat. Mater.
5
,
39
(
2006
).
20.
T.
Yamamoto
,
J. Chem. Phys.
107
,
2653
(
1997
).
21.
T.
Yamamoto
,
J. Chem. Phys.
89
,
2356
(
1998
).
22.
T.
Yamamoto
,
J. Chem. Phys.
115
,
8675
(
2001
).
23.
T.
Yamamoto
,
Polymer
45
,
1357
(
2004
).
24.
T.
Yamamoto
,
Adv. Polym. Sci.
191
,
37
(
2005
).
25.
C. M.
Chen
and
P. G.
Higgs
,
J. Chem. Phys.
108
,
4305
(
1998
).
26.
J. P.
Doye
and
D.
Frenkel
,
J. Chem. Phys.
109
,
10033
(
1998
).
27.
J. P.
Doye
and
D.
Frenkel
,
J. Chem. Phys.
110
,
2692
(
1999
).
28.
N.
Waheed
,
M. S.
Lavine
, and
G.
Rutledge
,
J. Chem. Phys.
116
,
2301
(
2002
).
29.
N.
Waheed
,
M. J.
Ko
, and
G. C.
Rutledge
,
Polymer
46
,
8689
(
2005
).
30.
A.
Koyama
,
T.
Yamamoto
,
K.
Fukao
, and
Y.
Miyamoto
,
Phys. Rev. E
65
,
050801
(
2002
).
31.
M. J.
Ko
,
N.
Waheed
,
M. S.
Lavine
, and
G. C.
Rutledge
,
J. Chem. Phys.
121
,
2823
(
2004
).
32.
I.
Dukovski
and
M.
Muthukumar
,
J. Chem. Phys.
118
,
6648
(
2003
).
33.
I.
Weissbuch
,
L.
Addadi
,
M.
Lahav
, and
L.
Leiserowitz
,
Science
253
,
637
(
1991
).
34.
L.
Cartier
,
T.
Okihara
,
Y.
Ikada
,
H.
Tsuji
,
J.
Puiggali
, and
B.
Lotz
,
Polymer
41
,
8909
(
2000
).
35.
C.
Mathieu
,
W.
Stocker
,
A.
Thierry
,
J. C.
Wittman
, and
B.
Lotz
,
Polymer
42
,
7033
(
2001
).
36.
P.
Choi
,
H. P.
Blom
,
T. A.
Kavassalis
, and
A.
Rudin
,
Macromolecules
28
,
8247
(
1995
).
37.
K.
Nagarajan
and
A. S.
Myerson
,
Cryst. Growth Des.
1
,
131
(
2001
).
38.
T.
Yamamoto
,
N.
Orimi
,
N.
Urakami
, and
K.
Sawada
,
Faraday Discuss.
128
,
75
(
2005
).
39.
T.
Yamamoto
and
K.
Sawada
,
J. Chem. Phys.
123
,
234906
(
2005
).
40.
D.
Rigby
and
R.
Roe
,
J. Chem. Phys.
87
,
7285
(
1987
).
41.
Integrated simulation system for polymeric material design (OCTA), Nagoya University Doi Project, Japan, http://octa.jp/index.html
42.
T.
Yamamoto
,
J. Polym. Sci., Polym. Phys. Ed.
23
,
771
(
1985
).
43.
M.
Hirose
,
T.
Yamamoto
, and
M.
Naiki
,
Comput. Theor. Polym. Sci.
10
,
345
(
2000
).
You do not currently have access to this content.