The problem of the double bond flipping interconversion of the two equivalent ground state structures of cyclobutadiene (CBD) is addressed at the multireference average-quadratic coupled cluster level of theory, which is capable of optimizing the structural parameters of the ground, transition, and excited states on an equal footing. The barrier height involving both the electronic and zero-point vibrational energy contributions is 6.3kcalmol1, which is higher than the best earlier theoretical estimate of 4.0kcalmol1. This result is confirmed by including into the reference space the orbitals of the CC σ bonds beyond the standard π orbital space. It places the present value into the middle of the range of the measured data (1.610kcalmol1). An adiabatic singlet-triplet energy gap of 7.4kcalmol1 between the transition state Btg1 and the first triplet A2g3 state is obtained. A low barrier height for the CBD automerization and a small ΔE(A2g3,B1g1) gap bear some relevance on the highly pronounced reactivity of CBD, which is briefly discussed.

1.
T.
Bally
and
S.
Masamune
,
Tetrahedron
36
,
343
(
1980
).
2.
V. I.
Minkin
,
M. N.
Glukhovtsev
, and
B. Ya.
Simkin
,
Aromaticity and Antiaromaticity Electronic and Structural Aspects
(
Wiley
,
New York
,
1994
).
3.
A.
Baeyer
,
Ber. Dtsch. Chem. Ges.
18
,
2269
(
1885
).
4.
M. P.
Cava
and
M. J.
Mitchell
,
Cyclobutadiene and Related Compounds
(
Academic
,
New York
,
1967
).
5.
B.
Arnold
and
J.
Michl
, in
Kinetics and Spectroscopy of Carbenes and Biradicals
, edited by
M.
Platz
(
Plenum
,
New York
,
1989
), p.
1
, and references therein.
6.
G.
Maier
,
Angew. Chem., Int. Ed. Engl.
27
,
309
(
1974
);
M.
Eckert-Maksić
and
Z. B.
Maksić
, in
The Chemistry of Cyclobutanes
, edited by
Z.
Rappoport
and
J. F.
Liebman
(
Wiley
,
Chichester
,
2005
), p.
16
.
7.
N. C.
Baird
,
J. Am. Chem. Soc.
94
,
4941
(
1972
).
8.
H.
Kollmar
and
V.
Staemmler
,
J. Am. Chem. Soc.
99
,
3583
(
1977
).
9.
J. A.
Jafri
and
M. D.
Newton
,
J. Am. Chem. Soc.
100
,
5012
(
1978
).
10.
W. T.
Borden
,
E. R.
Davidson
, and
P.
Hart
,
J. Am. Chem. Soc.
100
,
388
(
1978
).
11.
H.
Kollmar
and
V.
Staemmler
,
Theor. Chim. Acta
48
,
223
(
1978
).
12.
F.
Fratev
,
V.
Monev
, and
R.
Janoschek
,
Tetrahedron
38
,
2929
(
1982
).
13.
B. A.
Hess
, Jr.
,
P.
Čársky
, and
L. J.
Schaad
,
J. Am. Chem. Soc.
105
,
695
(
1983
).
14.
M. N.
Glukhovtsev
,
S.
Laiter
, and
A.
Pross
,
J. Phys. Chem.
99
,
6828
(
1995
).
15.
A. F.
Voter
and
W. A.
Goddard
 III
,
J. Am. Chem. Soc.
108
,
2830
(
1986
).
16.
A.
Metropolous
and
Y.-N.
Chiu
,
J. Mol. Struct.: THEOCHEM
417
,
95
(
1997
).
17.
J.
Gerratt
,
D. L.
Cooper
,
P. B.
Karadakov
, and
M.
Raimondi
,
Chem. Soc. Rev.
26
,
87
(
1997
).
18.
S.
Zilberg
and
Y.
Haas
,
J. Phys. Chem. A
102
,
10843
(
1998
).
19.
J. C.
Sancho-Garcia
,
J.
Pittner
,
P.
Čársky
, and
I.
Hubač
,
J. Chem. Phys.
112
,
8785
(
2000
).
20.
J. C.
Sancho-Garcia
,
A. J.
Pérez-Jiménez
, and
F.
Moscardó
,
Chem. Phys. Lett.
317
,
245
(
2000
).
21.
M.
Balci
,
M. L.
McKee
, and
P. V. R.
Schleyer
,
J. Phys. Chem. A
104
,
1246
(
2000
).
22.
Y.
Shiota
,
M.
Kondo
, and
K.
Yoshizawa
,
J. Chem. Phys.
115
,
9243
(
2001
).
23.
B.
Kovačević
,
D.
Barić
,
Z. B.
Maksić
, and
Th.
Müller
,
J. Phys. Chem. A
108
,
9126
(
2004
).
24.
Z. B.
Maksić
,
D.
Barić
, and
I.
Petanjek
,
J. Phys. Chem. A
104
,
10873
(
2000
).
25.
S. V.
Levchenko
and
A. I.
Krylov
,
J. Chem. Phys.
120
,
175
(
2004
).
26.
G. F.
Emerson
,
L.
Watts
, and
R.
Pettit
,
J. Am. Chem. Soc.
87
,
131
(
1965
);
P. C.
Reeves
,
J.
Henery
, and
R.
Pettit
,
J. Am. Chem. Soc.
91
,
5888
(
1969
);
P. C.
Reeves
,
T.
Devon
, and
R.
Pettit
,
J. Am. Chem. Soc.
91
,
5890
(
1969
).
27.
H.
Irngartinger
and
M.
Nixdorf
,
Angew. Chem., Int. Ed. Engl.
22
,
403
(
1983
).
28.
O.
Ermer
and
E.
Heilbronner
,
Angew. Chem., Int. Ed. Engl.
22
,
402
(
1983
) and references therein.
29.
J.
Kreile
,
N.
Münzel
,
A.
Schweig
, and
H.
Specht
,
Chem. Phys. Lett.
124
,
140
(
1986
).
30.
D. W.
Whitman
and
B. K.
Carpenter
,
J. Am. Chem. Soc.
104
,
6473
(
1982
);
B. K.
Carpenter
,
J. Am. Chem. Soc.
105
,
1700
(
1983
).
31.
G.
Maier
,
H. O.
Kalinowski
, and
K.
Euler
,
Angew. Chem., Int. Ed. Engl.
21
,
693
(
1982
).
32.
P.
Čársky
,
R. J.
Bartlett
,
G.
Fitzgerald
,
J.
Noga
, and
V.
Špirko
,
J. Chem. Phys.
89
,
3008
(
1988
).
33.
P.
Čársky
,
V.
Špirko
,
B. A.
Hess
, Jr.
, and
L. J.
Schaad
,
J. Chem. Phys.
92
,
6069
(
1990
).
34.
K.
Nakamura
,
Y.
Osamura
, and
S.
Iwata
,
Chem. Phys.
136
,
67
(
1989
).
35.
P.
Čársky
and
J.
Michl
,
Theor. Chim. Acta
84
,
125
(
1992
).
36.
B. R.
Arnold
,
J. G.
Radziszewski
,
A.
Campion
,
S. S.
Perry
, and
J.
Michl
,
J. Am. Chem. Soc.
113
,
692
(
1991
).
37.
P. S.
Zuev
,
R. S.
Sheridan
,
T. V.
Albu
,
D. G.
Truhlar
,
D. A.
Hrovat
, and
W. T.
Borden
,
Science
299
,
867
(
2003
).
38.
B. R.
Arnold
and
J.
Michl
,
J. Phys. Chem.
97
,
13348
(
1993
).
39.
W. J.
Hehre
,
L.
Radom
,
P. V. R.
Schleyer
, and
J. A.
Pople
, in
Ab Initio Molecular Orbital Theory
(
Wiley
,
New York
,
1986
).
40.
A.
Balková
and
R. J.
Bartlett
,
J. Chem. Phys.
101
,
8972
(
1994
).
41.
P. G.
Szalay
and
R. J.
Bartlett
,
Chem. Phys. Lett.
214
,
481
(
1993
).
42.
P. G.
Szalay
and
R. J.
Bartlett
,
J. Chem. Phys.
103
,
3600
(
1995
).
43.
R.
Shepard
,
H.
Lischka
,
P. G.
Szalay
,
T.
Kovar
, and
M.
Ernzerhof
,
J. Chem. Phys.
96
,
2085
(
1992
).
44.
R.
Shepard
, in
Modern Electronic Structure Theory
, edited by
D. R.
Yarkony
(
World Scientific
,
Singapore
,
1995
), p.
1
, p.
345
.
45.
H.
Lischka
,
M.
Dallos
, and
R.
Shepard
,
Mol. Phys.
100
,
1647
(
2002
).
46.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
47.
A.
Bunge
,
J. Chem. Phys.
53
,
20
(
1970
).
48.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
49.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
50.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
51.
G.
Fogarasi
,
X.
Zhou
,
P. W.
Taylor
, and
P.
Pulay
,
J. Am. Chem. Soc.
114
,
8191
(
1992
).
52.
P.
Czászár
and
P.
Pulay
,
J. Mol. Struct.
114
,
31
(
1984
).
53.
S. R.
Langhoff
and
E. R.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
).
54.
P. J.
Bruna
,
S. D.
Peyerimhoff
, and
R. J.
Buenker
,
Chem. Phys. Lett.
72
,
278
(
1980
).
55.
R.
Shepard
,
Adv. Chem. Phys.
69
,
63
(
1987
).
56.
F. W.
Bobrowicz
and
W. A.
Goddard
 III
, in
Methods of Electronic Structure Theory
, edited by
H. F.
Schaefer
 III
(
Plenum
,
New York
,
1977
), p.
79
.
57.
P.
Pulay
,
G.
Fogarasi
,
G.
Pongor
,
J. E.
Boggs
, and
A.
Vargha
,
J. Am. Chem. Soc.
105
,
7037
(
1983
).
58.
H.
Lischka
,
R.
Shepard
,
F. B.
Brown
, and
I.
Shavitt
,
Int. J. Quantum Chem., Symp.
15
,
91
(
1981
).
59.
R.
Shepard
,
I.
Shavitt
,
R. M.
Pitzer
,
D. C.
Comeau
,
M.
Pepper
,
H.
Lischka
,
P. G.
Szalay
,
R.
Ahlrichs
,
F. B.
Brown
, and
J.
Zhao
,
Int. J. Quantum Chem., Quantum Chem. Symp.
22
,
149
(
1988
).
60.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
 et al, COLUMBUS, an ab initio electronic structure program, Release 5.9,
2003
.
61.
H.
Lischka
,
R.
Shepard
,
R. M.
Pitzer
 et al,
Phys. Chem. Chem. Phys.
3
,
664
(
2001
).
62.
T.
Helgaker
,
H. J.
Aa Jensen
,
P.
Jørgensen
 et al, DALTON, an ab initio electronic structure program, Release 1.0,
1997
.
63.
See EPAPS Document No. E-JCPSA6-124-319629 for total molecular energies. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
64.
I.
Antol
,
M.
Eckert-Maksić
,
H.
Lischka
, and
Z. B.
Maksić
,
ChemPhysChem
5
,
975
(
2004
).
65.
M. W.
Schmidt
and
M. S.
Gordon
,
Annu. Rev. Phys. Chem.
49
,
233
(
1998
).
66.
V.
Gogonea
,
P. V. R.
Schleyer
, and
P. R.
Schreiner
,
Angew. Chem., Int. Ed.
37
,
1945
(
1998
).
67.
W. T.
Borden
,
J. Am. Chem. Soc.
97
,
5968
(
1975
).
68.
D.
Barić
,
B.
Kovačević
,
Z. B.
Maksić
, and
Th.
Müller
,
J. Phys. Chem. A
109
,
10594
(
2005
).
69.
S.
Shaik
and
A.
Shurki
,
Angew. Chem., Int. Ed.
38
,
586
(
1999
).
70.
J.
Wirz
,
A.
Krebs
,
H.
Schmalstieg
, and
H.
Angliker
,
Angew. Chem., Int. Ed. Engl.
20
,
192
(
1981
).

Supplementary Material

You do not currently have access to this content.