Thermal conductivity κ of seven polymerizing liquids has been measured in real time at different temperatures, and calorimetry and dielectric spectroscopy of one liquid are performed to help interpret the results. As a covalently bonded linear chain or a network structure in the liquid grows, κ of the Debye equation initially increases with the polymerization time tpolym as the molecular weight, density, and sound velocity increase, as on cooling a liquid. The measured κ reaches a maximum and then decreases, thus showing a peak at a certain tpolym and finally becomes constant, which is not the true behavior of steady state κ. The dielectric relaxation time of the covalently bonded structure at the tpolym for the κ peak is less than 5s and the extent of polymerization is below the vitrification plateau value. The peak height increases when the pulse time for κ measurement is increased. An increase in the liquid’s temperature shifts the κ peak to a shorter tpolym. Liquid compositions polymerizing rapidly show a similar shift, and those polymerizing slowly or whose viscosity does not reach a high enough value show a small κ peak or none. The κ peak may be an artifact of the time dependence of heat capacity during the pulse time used for the κ measurement, as proposed for glasses and supercooled liquids, similar to the changes in other properties observed as an artifact of kinetic freezing/unfreezing. For a polymerizing liquid, the peak may additionally arise when the rate of increase in the elastic modulus becomes equal to the rate of decrease in equilibrium Cp. In either case, its appearance does not distinguish the Brownian motions’ slowing on polymerization from that on cooling or compressing a liquid.

1.
K.
Eiermann
,
K.-H.
Hellwege
, and
W.
Knappe
,
Kolloid Zietschrift
171
,
134
(
1961
).
2.
K.
Eiermann
and
K.-H.
Hellwege
,
J. Polym. Sci.
57
,
99
(
1962
).
3.
D. W.
van Krevelen
and
P. J.
Hoftizer
,
Properties of Polymers
(
Elsevier
,
New York
,
1972
), Chap. 14, p.
233
.
4.
B.
Sundqvist
,
O.
Sandberg
, and
G.
Bäckstrom
,
J. Phys. Appl. Phys. D
10
,
1397
(
1977
).
5.
D. G.
Cahill
and
R. O.
Pohl
,
Phys. Rev. B
35
,
4067
(
1987
).
6.
N. O.
Birge
,
Phys. Rev. B
34
,
1631
(
1986
).
7.
O.
Andersson
,
Int. J. Thermophys.
18
,
195
(
1997
).
8.
G. P.
Johari
, in
Disorder Effects in Relaxational Processes
, edited by
R.
Richert
and
A.
Blumen
(
Springer
,
New York
,
1994
), p.
627
.
9.
M. B. M.
Mangion
and
G. P.
Johari
,
J. Polym. Sci., Part B: Polym. Phys.
29
,
437
(
1991
).
10.
E.
Tombari
,
C.
Ferrari
,
G.
Salvetti
, and
G. P.
Johari
,
J. Polym. Sci., Part B: Polym. Phys.
36
,
303
(
1998
).
11.
J.-F.
Zhou
and
G. P.
Johari
,
Macromolecules
30
,
8085
(
1997
).
12.
D. A.
Wasylyshyn
and
G. P.
Johari
,
J. Chem. Phys.
104
,
5683
(
1996
).
14.
G. P.
Johari
,
J. G.
McAnanama
, and
D. A.
Wasylyshyn
,
J. Chem. Phys.
105
,
10621
(
1996
).
15.
D.
Wasylyshyn
and
G. P.
Johari
,
J. Phys. Chem. B
103
,
3997
(
1999
).
16.
M. G.
Parthun
and
G. P.
Johari
,
Macromolecules
25
,
3149
(
1992
).
17.
E.
Tombari
,
G.
Salvetti
, and
G. P.
Johari
,
J. Chem. Phys.
113
,
6957
(
2000
).
18.
D.
Wasylyshyn
and
G. P.
Johari
,
J. Polym. Sci., Part B: Polym. Phys.
35
,
437
(
1997
).
19.
D.
Wasylyshyn
,
G. P.
Johari
,
G.
Salvetti
, and
E.
Tombari
,
J. Phys.: Condens. Matter
9
,
10521
(
1997
).
20.
I.
Alig
,
K. G.
Häusler
,
K.
Nanke
,
W.
Tänzer
, and
S.
Wartewig
,
Acta Polym.
40
,
508
(
1989
).
21.
I.
Alig
,
D.
Lellinger
, and
G. P.
Johari
,
J. Polym. Sci., Part B: Polym. Phys.
30
,
791
(
1992
).
22.
M. G.
Parthun
and
G. P.
Johari
,
J. Chem. Phys.
102
,
6301
(
1995
).
23.
C.
Ferrari
,
G.
Salvetti
,
E.
Tombari
, and
G. P.
Johari
,
Phys. Rev. E
54
,
R1058
(
1996
).
24.
S.
Presto
,
E.
Tombari
,
G.
Salvetti
, and
G. P.
Johari
,
Phys. Chem. Chem. Phys.
4
,
3415
(
2002
).
25.
M.
Holst
,
C.
Schanzlin
,
M.
Wenzel
,
J.
Xu
,
D.
Lellinger
, and
I.
Alig
,
J. Polym. Sci., Part B: Polym. Phys.
43
,
2314
(
2005
).
26.
J.
Wang
and
G. P.
Johari
,
J. Chem. Phys.
117
,
9897
(
2002
).
27.
G. P.
Johari
,
C.
Ferrari
,
G.
Salvetti
, and
E.
Tombari
,
Phys. Chem. Chem. Phys.
1
,
2997
(
1999
).
28.
H.
Yamura
,
M.
Matsukawa
,
T.
Otani
, and
N.
Ohtori
,
Jpn. J. Appl. Phys., Part 1
38
,
3175
(
1999
).
29.
J. K.
Krüger
,
J.
Baller
,
T.
Britz
,
A.
le Coutre
,
R.
Peter
,
R.
Bactavatchalou
, and
J.
Schreiber
,
Phys. Rev. B
66
,
012206
(
2002
).
30.
S.
Dixon
,
D.
Jaques
, and
S. B.
Plamer
,
J. Phys. D
36
,
753
(
2003
).
31.
G. P.
Johari
,
P.
Wen
, and
K.
Venkateshan
,
J. Chem. Phys.
124
,
154096
(
2006
).
32.
M. B. M.
Mangion
,
J. J.
Vanderwal
,
D.
Walton
, and
G. P.
Johari
,
J. Polym. Sci., Part B: Polym. Phys.
29
,
723
(
1991
).
33.
G. P.
Johari
,
S.
Presto
,
E.
Tombari
, and
G.
Salvetti
,
J. Chem. Phys.
117
,
5086
(
2002
).
34.
M.
Beiner
and
K. L.
Ngai
,
Macromolecules
38
,
7033
(
2005
).
35.
M.
Cassettari
,
G.
Salvetti
,
E.
Tombari
,
S.
Veronesi
, and
G. P.
Johari
,
Physica A
201
,
95
(
1993
).
36.
D. A.
Wasylyshyn
,
G. P.
Johari
,
E.
Tombari
, and
G.
Salvetti
,
Chem. Phys.
223
,
313
(
1997
).
37.
K.
Venkateshan
and
G. P.
Johari
,
J. Phys. Chem. B
108
,
15049
(
2004
).
38.
M. B.
Mangion
,
M.
Wang
, and
G. P.
Johari
,
J. Polym. Sci., Part B: Polym. Phys.
30
,
433
(
1992
).
39.
Thermophysical Properties of Matter: Thermal Conductivity-Nonmetallic Solids
, edited by
Y. S.
Touloukian
,
R. W.
Powell
,
C. Y.
Ho
, and
P. G.
Klemens
(
IFI/Plenum
,
New York
,
1970
), Vol.
2
, pp.
953
966
.
40.
S. P.
Andersson
and
O.
Andersson
,
J. Polym. Sci., Part B: Polym. Phys.
36
,
1451
(
1998
).
41.
S. P.
Andersson
and
O.
Andersson
,
J. Polym. Sci., Part B: Polym. Phys.
36
,
345
(
1998
).
42.
S. P.
Andersson
and
O.
Andersson
,
Macromolecules
31
,
2999
(
1998
).
43.
O.
Andersson
,
A.
Soldatov
, and
B.
Sundqvist
,
Phys. Lett. A
206
,
260
(
1995
).
44.
P. K.
Dixon
and
S. R.
Nagel
,
Phys. Rev. Lett.
61
,
341
(
1988
).
45.
It has been argued [
R.
Zwanzig
,
J. Chem. Phys.
88
,
5831
(
1988
)] that the quantity measured as frequency-dependent heat capacity of a liquid is directly related to a frequency-dependent longitudinal viscosity, and hence the relaxation of heat capacity has a hydrodynamic origin. But orientationally disordered crystals mimic glass transition and a heating rate, and show a frequency-dependent Cp and a time-dependent change in thermodynamic properties, just as normal liquids and glasses, though they show no hydrodynamics.
46.
47.
R. O.
Davies
and
G. O.
Jones
,
Adv. Phys.
2
,
370
(
1953
).
48.
G. W.
Scherer
,
Relaxation in Glass and Composites
(
Wiley
,
New York
,
1986
).
49.
E.
Tombari
,
S.
Presto
,
G.
Salvetti
, and
G. P.
Johari
,
J. Chem. Phys.
117
,
8436
(
2002
).
50.
L.
Wu
,
P. K.
Dixon
,
S. R.
Nagel
,
B. D.
Williams
, and
J. P.
Carini
,
J. Non-Cryst. Solids
131–133
,
32
(
1991
).
51.
G. P.
Johari
,
J. Chem. Phys.
113
,
751
(
2000
).
52.
A.
Kardos
,
Forsch. Geb. Ingenieurwes.
5B
,
14
(
1934
).
53.
B. C.
Sakiadis
and
J.
Coates
,
AIChE J.
1
,
275
(
1955
);
B. C.
Sakiadis
and
J.
Coates
,
AIChE J.
2
,
88
(
1956
).
54.
J. S.
Dugdale
and
K. C.
MacDonald
,
Phys. Rev.
98
,
1751
(
1955
).
55.
E.
Tombari
,
C.
Ferrari
,
G.
Salvetti
, and
G. P.
Johari
,
Chem. Phys.
230
,
267
(
1998
).
56.
G.
Salvetti
,
C.
Ferrari
, and
E.
Tombari
,
Thermochim. Acta
316
,
47
(
1998
).
57.
M. G.
Parthun
, Ph.D. thesis,
McMaster University
,
1997
, pp.
88
and
90
.
58.
D. A.
Wasylyshyn
, Ph.D. thesis,
McMaster University
,
1998
, p.
148
.
59.
D. A.
Wasylyshyn
, Ph.D. thesis,
McMaster University
,
1998
, p.
145
.
60.
D. A.
Wasylyshyn
, Ph.D. thesis,
McMaster University
, p.
147
.
You do not currently have access to this content.