The ability of different correlation functions to shed some light onto the conformational dynamics of an amorphous polymer has been analyzed. The study has been performed on a polyethylene model polymer, which has been simulated at decreasing temperatures towards its glass transition, via the molecular dynamics technique. Three rotational isomers are allowed by the considered torsional potential. The correlation times associated with the evaluated transition rates have shown to be Arrhenius in nature, with activation energies resulting basically from internal rotation barriers. Overall torsional autocorrelation functions have been calculated. We have observed that they are dominated by slow events. Alternatively, a set of torsional autocorrelation functions associated with every isomeric state has been evaluated. Stretched exponential fits lead to correlation times that display Vogel-Fulcher temperature dependence.

1.
W.
Paul
and
G. D.
Smith
,
Rep. Prog. Phys.
67
,
1117
(
2004
).
2.
Simulation Methods for Polymers
, edited by
M. J.
Kotelyanskii
and
D. N.
Theodorou
(
Dekker
,
New York
,
2004
).
3.
J. P.
Ryckaert
,
G.
Cicotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
4.
J. P.
Ryckaert
and
A.
Bellemans
,
Chem. Phys. Lett.
30
,
123
(
1975
).
5.
V. G.
Mavrantzas
and
D. N.
Theodorou
,
Macromolecules
31
,
6310
(
1998
);
V. G.
Mavrantzas
and
H. C.
Öttinger
,
Macromolecules
35
,
960
(
2002
).
6.
V. G.
Mavrantzas
and
D. N.
Theodorou
,
Comput. Theor. Polym. Sci.
10
,
1
(
2000
);
V. G.
Mavrantzas
and
D. N.
Theodorou
,
Macromol. Theory Simul.
9
,
500
(
2000
).
7.
V. A.
Harmandaris
,
V. G.
Mavrantzas
, and
D. N.
Theodorou
,
Macromolecules
31
,
7934
(
1998
);
V. A.
Harmandaris
,
V. G.
Mavrantzas
, and
D. N.
Theodorou
,
Macromolecules
33
,
8062
(
2000
).
8.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
9.
O.
Olabisi
and
R.
Simha
,
Macromolecules
8
,
206
(
1975
).
10.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
Van Gunsteren
,
A.
Di Nola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
11.
J.
Brandrup
,
E. H.
Immergut
, and
E. A.
Grulke
,
Polymer Handbook
(
Wiley-Interscience
,
New Jersey
,
1999
).
12.
R. H.
Boyd
,
R. H.
Gee
,
J.
Han
, and
Y.
Jin
,
J. Chem. Phys.
101
,
788
(
1994
).
13.
G. D.
Smith
,
O.
Borodin
,
D.
Bedrov
,
W.
Paul
,
X. H.
Qui
, and
M. D.
Ediger
,
Macromolecules
34
,
5192
(
2001
).
14.
S. U.
Boyd
and
R. H.
Boyd
,
Macromolecules
34
,
7219
(
2001
).
15.
I.
Zúñiga
,
I.
Bahar
,
R.
Dodge
, and
W. L.
Mattice
,
J. Chem. Phys.
95
,
5348
(
1991
).
16.
G. D.
Smith
,
O.
Borodin
, and
W.
Paul
,
J. Chem. Phys.
117
,
10350
(
2002
).
17.
G. D.
Smith
,
D. Y.
Yoon
,
W.
Zhu
, and
M. D.
Ediger
,
Macromolecules
27
,
5563
(
1994
).
18.
H.
Takeuchi
and
R. J.
Roe
,
J. Chem. Phys.
94
,
7446
(
1991
).
19.
J.
Colmenero
,
Macromol. Symp.
94
,
105
(
1995
).
20.
G.
Strobl
,
The Physics of Polymers
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1997
).
You do not currently have access to this content.