We investigate ion and polymer dynamics in polymer electrolytes PPO-LiClO4 performing H2 and Li7 NMR line-shape analysis. Comparison of temperature dependent Li7 and H2 NMR spectra gives evidence for a coupling of ion and polymer dynamics. H2 NMR spectra for various salt concentrations reveal a strong slowdown of the polymer segmental motion when the salt content is increased. The H2 NMR line shape further indicates that the segmental motion is governed by dynamical heterogeneities. While the width of the distribution of correlation times G(logτ) is moderate for low and high salt content, an extremely broad distribution exists for an intermediate salt concentration of 15:1 PPO-LiClO4. For the latter composition, a weighted superposition of two spectral components, reflecting the fast and the slow polymer segments of the distribution, describes the H2 NMR line shape over a broad temperature range. Analysis of the temperature dependent relative intensity of both spectral components indicates the existence of a continuous rather than a discontinuous distribution G(logτ). Such continuous distribution is consistent with gradual fluctuations of the local salt concentration and, hence, of the local environments of the polymer segments, whereas it is at variance with the existence of large salt-depleted and salt-rich domains featuring fast and slow polymer dynamics, respectively. Finally, for all studied PPO-LiClO4 mixtures, the H2 NMR line shape strongly depends on the echo delay in the applied echo-pulse sequence, indicating that the structural relaxation of the polymer segments involves successive rotational jumps about small angles γ<20°.

1.
M. B.
Armand
,
J. M.
Chabagno
, and
M. J.
Duclot
, in
Fast Ion Transport in Solids
, edited by
P.
Vasishta
,
J. N.
Mundy
, and
G. K.
Shenoy
(
North-Holland
,
Amsterdam
,
1979
).
2.
M. A.
Ratner
, in
Polymer Electrolyte Reviews
, edited by
J. R.
MacCallum
and
C. A.
Vincent
(
Elsevier
,
London
,
1987
), Vol.
1
.
3.
C. A.
Vincent
,
Electrochim. Acta
40
,
2035
(
1995
).
4.
N. A.
Stolwijk
and
S.
Obeidi
,
Phys. Rev. Lett.
93
,
125901
(
2004
).
5.
A.
Ferry
,
P.
Jacobsson
, and
L. M.
Torell
,
Electrochim. Acta
40
,
2369
(
1995
).
6.
R.
Frech
,
S.
York
,
H.
Allcock
, and
C.
Kellam
,
Macromolecules
37
,
8699
(
2004
).
7.
M. G.
McLin
and
C. A.
Angell
,
J. Phys. Chem.
95
,
9464
(
1991
).
8.
T.
Furukawa
,
Y.
Mukasa
,
T.
Suzuki
, and
K.
Kano
,
J. Polym. Sci., Part B: Polym. Phys.
40
,
613
(
2002
).
9.
J.
Moacanin
and
E. F.
Cuddihy
,
J. Polym. Sci., Part C: Polym. Symp.
14
,
313
(
1966
).
10.
C.
Vachon
,
M.
Vasco
,
M.
Perrier
, and
J.
Prud’homme
,
Macromolecules
26
,
4023
(
1993
).
11.
C.
Vachon
,
C.
Labreche
,
A.
Vallee
,
S.
Besner
,
M.
Dumont
, and
J.
Prud’homme
,
Macromolecules
28
,
5585
(
1995
).
12.
R.
Bergman
,
A.
Brodin
,
D.
Engberg
,
Q.
Lu
,
C. A.
Angell
, and
L. M.
Torell
,
Electrochim. Acta
40
,
2049
(
1995
).
13.
P.
Carlsson
,
B.
Mattsson
,
J.
Swenson
,
L. M.
Torell
,
M.
Käll
,
L.
Börjesson
,
R. L.
McGreevy
,
K.
Mortensen
, and
B.
Gabrys
,
Solid State Ionics
113–115
,
139
(
1998
).
14.
P.
Carlsson
,
R.
Zorn
,
D.
Andersson
,
B.
Farago
,
W. S.
Howells
, and
L.
Börjesson
,
J. Chem. Phys.
114
,
9645
(
2001
).
15.
P.
Carlsson
,
D.
Andersson
,
J.
Swenson
,
R. L.
McGreevy
,
W. S.
Howells
, and
L.
Börjesson
,
J. Chem. Phys.
121
,
12026
(
2004
).
16.
L. M.
Torell
and
S.
Schantz
,
J. Non-Cryst. Solids
131–133
,
981
(
1991
).
17.
C.
Roux
,
W.
Gorecki
,
J.-Y.
Sanchez
,
M.
Jeannin
, and
E.
Belorizky
,
J. Phys.: Condens. Matter
8
,
7005
(
1996
).
18.
S.
Arumugam
,
J.
Shi
,
D. P.
Tunstall
, and
C. A.
Vincent
,
J. Phys.: Condens. Matter
5
,
153
(
1993
).
19.
I. M.
Ward
,
N.
Boden
,
J.
Cruickshank
, and
S. A.
Leng
,
Electrochim. Acta
40
,
2071
(
1995
).
20.
S. H.
Chung
,
K. R.
Jeffrey
, and
J. R.
Stevens
,
J. Chem. Phys.
94
,
1803
(
1991
).
21.
S. H.
Chung
,
K. R.
Jeffrey
, and
J. R.
Stevens
,
J. Chem. Phys.
108
,
3360
(
1998
).
22.
K. J.
Adamic
,
S. G.
Greenbaum
,
K. M.
Abraham
,
M.
Alamgir
,
M. C.
Wintersgill
, and
J. J.
Fontanella
,
Chem. Mater.
3
,
534
(
1991
).
23.
J.
Fan
,
R. F.
Marzke
,
E.
Sanchez
, and
C. A.
Angell
,
J. Non-Cryst. Solids
172–174
,
1178
(
1994
).
24.
J. P.
Donoso
,
T. J.
Bonagamba
,
P. L.
Frare
,
N. C.
Mello
,
C. J.
Magon
, and
H.
Panepucci
,
Electrochim. Acta
40
,
2361
(
1995
).
25.
M.
Forsyth
,
D. R.
MacFarlane
,
P.
Meakin
,
M. E.
Smith
, and
T. J.
Bastow
,
Electrochim. Acta
40
,
2343
(
1995
).
26.
K.
Schmidt-Rohr
and
H. W.
Spiess
,
Multidimensional Solid-State NMR and Polymers
(
Academic
,
London
,
1994
).
27.
T.
Takahashi
,
H.
Kawashima
,
H.
Sugisawa
, and
T.
Baba
,
Solid State Nucl. Magn. Reson.
15
,
119
(
1999
).
28.
O.
Kanert
and
M.
Mehring
, in
NMR Basic Principles and Progress
, edited by
P.
Diehl
,
E.
Fluck
, and
R.
Kosfeld
(
Springer
,
Berlin
,
1971
), Vol.
3
.
29.
E.
Rössler
,
M.
Taupitz
,
K.
Börner
,
M.
Schulz
, and
H.-M.
Vieth
,
J. Chem. Phys.
92
,
5847
(
1990
).
30.
R.
Böhmer
,
G.
Diezemann
,
G.
Hinze
, and
E.
Rössler
,
Prog. Nucl. Magn. Reson. Spectrosc.
39
,
191
(
2001
).
31.
H. W.
Spiess
and
H.
Sillescu
,
J. Magn. Reson. (1969-1992)
42
,
381
(
1981
).
32.
J. H.
Ok
,
R. R.
Vold
,
R. L.
Vold
, and
M. C.
Etter
,
J. Phys. Chem.
93
,
7618
(
1989
).
33.
U.
Pschorn
,
E.
Rössler
,
H.
Sillescu
,
S.
Kaufmann
,
D.
Schaefer
, and
H. W.
Spiess
,
Macromolecules
24
,
398
(
1991
).
34.
J.
Zhao
,
Y. H.
Chin
,
Y.
Liu
,
A. A.
Jones
,
P. T.
Inglefield
,
R. P.
Kambour
, and
D. M.
White
,
Macromolecules
28
,
3881
(
1995
).
35.
M.
Vogel
and
E.
Rössler
,
J. Magn. Reson.
147
,
43
(
2000
).
36.
M.
Vogel
and
E.
Rössler
,
J. Chem. Phys.
114
,
5802
(
2001
).
37.
M.
Vogel
,
P.
Medick
, and
E.
Rössler
,
Annu. Rep. NMR Spectrosc.
56
,
231
(
2005
).
38.
M.
Vogel
,
C.
Tschirwitz
,
G.
Schneider
,
C.
Koplin
,
P.
Medick
, and
E.
Rössler
,
J. Non-Cryst. Solids
307
,
326
(
2002
).
39.
E. R.
deAzevedo
,
T. J.
Bonagamba
, and
D.
Reichert
,
Prog. Nucl. Magn. Reson. Spectrosc.
47
,
137
(
2005
).
40.
U.
Tracht
,
A.
Heuer
, and
H. W.
Spiess
,
J. Chem. Phys.
111
,
3720
(
1999
).
41.
J. E.
Anderson
,
Faraday Symp. Chem. Soc.
6
,
82
(
1972
).
42.
N.
Bloembergen
,
E. M.
Purcell
, and
R. V.
Pound
,
Phys. Rev.
73
,
679
(
1948
).
43.
G.
Allen
and
J. S.
Higgins
,
Macromolecules
10
,
1006
(
1977
).
44.
D.
Andersson
,
P.
Carlsson
,
D.
Engberg
,
L. M.
Torell
,
L.
Börjesson
,
R. L.
McGreevy
, and
W. S.
Howells
,
Physica B
266
,
126
(
1999
).
45.
W.
Schnauss
,
F.
Fujara
,
K.
Hartmann
, and
H.
Sillescu
,
Chem. Phys. Lett.
166
,
381
(
1990
).
46.
J.
Leisen
,
K.
Schmidt-Rohr
, and
H. W.
Spiess
,
J. Non-Cryst. Solids
172
,
737
(
1994
).
47.
S. A.
Lusceac
,
C.
Koplin
,
P.
Medick
,
M.
Vogel
,
N.
Brodie-Linder
,
C.
LeQuellec
,
C.
Alba-Simionesco
, and
E.
Rössler
,
J. Phys. Chem. B
108
,
43
(
2004
).
48.
G. P.
Johari
and
M.
Goldstein
,
J. Chem. Phys.
53
,
2372
(
1970
).
49.
D. L.
Sidebottom
and
G. P.
Johari
,
J. Polym. Sci., Part B: Polym. Phys.
29
,
1215
(
1991
).
50.
T.
Blochowicz
,
A.
Kudlik
,
S.
Benkhof
,
J.
Senker
, and
E.
Rössler
,
J. Chem. Phys.
110
,
12011
(
1999
).
51.
C.
Leon
,
K. L.
Ngai
, and
C. M.
Roland
,
J. Chem. Phys.
110
,
11585
(
1999
).
52.

To determine the weighting factor W(T) we fit the central region [15kHz;+15kHz] of the spectrum to a Lorentzian line on top of a curved base line, where the latter is meant to represent the spectral intensity resulting from the rigid-lattice spectrum. Furthermore, we calculate the total spectral intensity by integration of the experimental spectrum. Then, W(T) is the contribution of the intensity of the Lorentzian to the total spectral intensity. Due to the presence of different deuteron species, this approach allowed us to obtain more accurate results for W(T) than fitting of the whole spectrum with a superposition of line shapes.

53.
M.
Vogel
and
T.
Torbrügge
(unpublished).
54.
M.
Vogel
,
C.
Brinkmann
,
H.
Eckert
, and
A.
Heuer
,
Phys. Chem. Chem. Phys.
4
,
3237
(
2002
).
55.
R.
Böhmer
,
R. V.
Chamberlin
,
G.
Diezemann
 et al,
J. Non-Cryst. Solids
235
,
1
(
1998
).
56.
A.
Heuer
,
U.
Tracht
,
S. C.
Kuebler
, and
H. W.
Spiess
,
J. Mol. Struct.
479
,
251
(
1999
).
You do not currently have access to this content.