Most applications of time-dependent density-functional theory (TDDFT) use the adiabatic local-density approximation (ALDA) for the dynamical exchange-correlation potential Vxc(r,t). An exact (i.e., nonadiabatic) extension of the ground-state LDA into the dynamical regime leads to a Vxc(r,t) with a memory, which causes the electron dynamics to become dissipative. To illustrate and explain this nonadiabatic behavior, this paper studies the dynamics of two interacting electrons on a two-dimensional quantum strip of finite size, comparing TDDFT within and beyond the ALDA with numerical solutions of the two-electron time-dependent Schrödinger equation. It is shown explicitly how dissipation arises through multiple particle-hole excitations, and how the nonadiabatic extension of the ALDA fails for finite systems but becomes correct in the thermodynamic limit.

1.
E.
Runge
and
E. K.U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
2.
Time-Dependent Density Functional Theory
,
Lecture Notes in Physics
Vol.
706
edited by
M. A.L.
Marques
,
C. A.
Ullrich
,
F.
Nogueira
,
A.
Rubio
,
K.
Burke
, and
E. K.U.
Gross
(
Springer
,
Berlin
,
2006
).
3.
F.
Furche
and
K.
Burke
, in
Annual Reports in Computational Chemistry
, edited by
D.
Spellmeyer
(
Elsevier
,
Amsterdam
,
2005
), Vol.
1
, p.
19
.
4.
N. T.
Maitra
,
F.
Zhang
,
R. J.
Cave
, and
K.
Burke
,
J. Chem. Phys.
120
,
5932
(
2004
).
5.
N. T.
Maitra
,
J. Chem. Phys.
122
,
234104
(
2005
).
6.
C. A.
Ullrich
and
I. V.
Tokatly
,
Phys. Rev. B
73
,
235102
(
2006
).
7.
G.
Vignale
and
W.
Kohn
,
Phys. Rev. Lett.
77
,
2037
(
1996
).
8.
J. F.
Dobson
,
M. J.
Bünner
, and
E. K.U.
Gross
,
Phys. Rev. Lett.
79
,
1905
(
1997
).
9.
G.
Vignale
,
C. A.
Ullrich
, and
S.
Conti
,
Phys. Rev. Lett.
79
,
4878
(
1997
).
10.
C. A.
Ullrich
and
G.
Vignale
,
Phys. Rev. B
65
,
245102
(
2002
);
C. A.
Ullrich
and
G.
Vignale
,
Phys. Rev. B
70
,
239903
(E) (
2004
).
11.
Y.
Kurzweil
and
R.
Baer
,
J. Chem. Phys.
121
,
8731
(
2004
).
12.
I. V.
Tokatly
,
Phys. Rev. B
71
,
165104
(
2005
);
I. V.
Tokatly
,
Phys. Rev. B
71
,
165105
(
2005
).
13.
M.
van Faassen
,
P. L.
de Boeij
,
R.
van Leeuwen
,
J. A.
Berger
, and
J. G.
Snijders
,
Phys. Rev. Lett.
88
,
186401
(
2002
);
[PubMed]
M.
van Faassen
,
P. L.
de Boeij
,
R.
van Leeuwen
,
J. A.
Berger
, and
J. G.
Snijders
,
J. Chem. Phys.
118
,
1044
(
2003
).
14.
M.
van Faassen
,
Int. J. Mod. Phys. B
20
,
3419
(
2006
).
15.
H. O.
Wijewardane
and
C. A.
Ullrich
,
Phys. Rev. Lett.
95
,
086401
(
2005
).
16.
R.
D’Agosta
and
G.
Vignale
,
Phys. Rev. Lett.
96
,
016405
(
2006
).
17.
B.
Tanatar
and
D. M.
Ceperley
,
Phys. Rev. B
39
,
5005
(
1989
).
18.
C.
Attaccalite
,
S.
Moroni
,
P.
Gori-Giorgi
, and
G. B.
Bachelet
,
Phys. Rev. Lett.
88
,
256601
(
2002
).
19.
Z.
Qian
and
G.
Vignale
,
Phys. Rev. B
65
,
235121
(
2002
).
20.
A.
Holas
and
K. S.
Singwi
,
Phys. Rev. B
40
,
158
(
1989
).
21.
E. K.U.
Gross
and
W.
Kohn
,
Phys. Rev. Lett.
55
,
2850
(
1985
);
[PubMed]
E. K.U.
Gross
and
W.
Kohn
,
Phys. Rev. Lett.
57
,
923
(E) (
1986
).
22.
I.
D’Amico
and
G.
Vignale
,
Phys. Rev. B
59
,
7876
(
2001
).
23.
C.
Filippi
,
C. J.
Umrigar
, and
M.
Taut
,
J. Chem. Phys.
100
,
1290
(
1994
).
24.
In the presence of time-dependent external potentials, the definition of a time-dependent energy is less obvious since the associated many-body Hamiltonian no longer represents the energy operator of the system.
See
A.
Böhm
,
Quantum Mechanics
, 3rd ed. (
Springer
,
New York
,
2001
).
25.
S. K.
Ghosh
and
A. K.
Dhara
,
Phys. Rev. A
38
,
1149
(
1988
).
26.
G.
Vignale
,
Phys. Rev. B
70
,
201102
(
2004
).
27.
N. T.
Maitra
,
K.
Burke
, and
C.
Woodward
,
Phys. Rev. Lett.
89
,
023002
(
2002
).
28.
P.
Hessler
,
J.
Park
, and
K.
Burke
,
Phys. Rev. Lett.
82
,
378
(
1999
);
P.
Hessler
,
J.
Park
, and
K.
Burke
,
Phys. Rev. Lett.
83
,
5184
(E) (
1999
).
29.
P.
Hessler
,
N. T.
Maitra
, and
K.
Burke
,
J. Chem. Phys.
117
,
72
(
2002
).
30.
C. A.
Ullrich
and
K.
Burke
,
J. Chem. Phys.
121
,
28
(
2004
).
31.
C. A.
Ullrich
,
U. J.
Gossmann
, and
E. K.U.
Gross
,
Phys. Rev. Lett.
74
,
872
(
1995
).
You do not currently have access to this content.