We present a joint theoretical and experimental study of the maximization of the isotopomer ratio Na23K39Na23K41 using tailored phase-only as well as amplitude and phase modulated femtosecond laser fields obtained in the framework of optimal control theory and closed loop learning (CLL) technique. A good agreement between theoretically and experimentally optimized pulse shapes is achieved which allows to assign the optimized processes directly to the pulse shapes obtained by the experimental isotopomer selective CLL approach. By analyzing the dynamics induced by the optimized pulses we show that the mechanism involving the dephasing of the wave packets between the isotopomers Na23K39 and Na23K41 on the first excited state is responsible for high isotope selective ionization. Amplitude and phase modulated pulses, moreover, allow to establish the connection between the spectral components of the pulse and corresponding occupied vibronic states. It will be also shown that the leading features of the theoretically shaped pulses are independent from the initial conditions. Since the underlying processes can be assigned to the individual features of the shaped pulses, we show that optimal control can be used as a tool for analysis.

1.
D. J.
Tannor
and
S. A.
Rice
,
J. Chem. Phys.
83
,
5013
(
1985
).
2.
M.
Shapiro
and
P.
Brumer
,
J. Chem. Phys.
84
,
4103
(
1986
).
3.
A. P.
Peirce
,
M. A.
Dahleh
, and
H.
Rabitz
,
Phys. Rev. A
37
,
4950
(
1988
).
4.
R.
Kosloff
,
S. A.
Rice
,
P.
Gaspard
,
S.
Tersigni
, and
D. J.
Tannor
,
Chem. Phys.
139
,
201
(
1989
).
5.
S. A.
Rice
,
Science
258
,
412
(
1992
).
6.
R. S.
Judson
and
H.
Rabitz
,
Phys. Rev. Lett.
68
,
1500
(
1992
).
7.
A.
Assion
,
T.
Baumert
,
M.
Bergt
,
T.
Brixner
,
B.
Kiefer
,
V.
Seyfried
,
M.
Strehle
, and
G.
Gerber
,
Science
282
,
919
(
1998
).
8.
A.
Bartelt
,
S.
Minemoto
,
C.
Lupulescu
,
Š.
Vajda
, and
L.
Wöste
,
Eur. Phys. J. D
16
,
127
(
2001
).
9.
B.
Schäfer-Bung
,
R.
Mitrić
,
V.
Bonačić-Koutecký
,
A.
Bartelt
,
C.
Lupulescu
,
A.
Lindinger
,
Š.
Vajda
,
S. M.
Weber
, and
L.
Wöste
,
J. Phys. Chem. A
108
,
4175
(
2004
).
10.
R.
Hoki
and
P.
Brumer
,
Phys. Rev. Lett.
95
,
168305
(
2005
).
11.
M.
Spanner
and
P.
Brumer
,
Phys. Rev. A
73
,
023810
(
2006
).
12.
M.
Leibscher
and
I. S.
Averbukh
,
Phys. Rev. A
63
,
043407
(
2001
).
13.
J. R. R.
Verlet
,
V. G.
Stavros
, and
H. H.
Fielding
,
Phys. Rev. A
65
,
032504
(
2002
).
14.
A.
Lindinger
,
C.
Lupulescu
,
M.
Plewicki
,
F.
Vetter
,
A.
Merli
,
S. M.
Weber
, and
L.
Wöste
,
Phys. Rev. Lett.
93
,
033001
(
2004
).
15.
D. J.
Tannor
, in
Molecules in Laser Fields
, edited by
A. D.
Bandrauk
(
Dekker
,
New York
,
1994
), Chap. 8, p.
403
.
16.
A.
Bartana
,
R.
Kosloff
, and
D. J.
Tannor
,
J. Chem. Phys.
106
,
1435
(
1997
).
17.
V. F.
Krotov
,
Contr. Cybernet.
17
,
115
(
1988
).
18.
L.
Pesce
,
Z.
Amitay
,
R.
Uberna
,
S. R.
Leone
,
M.
Ratner
, and
R.
Kosloff
,
J. Chem. Phys.
114
,
1259
(
2001
).
19.
M.
Wefers
and
R. J.
Nelson
,
J. Opt. Soc. Am. B
12
,
1343
(
1995
).
20.
J. W.
Nicolson
,
J.
Jaspara
, and
W.
Rudolph
,
Opt. Lett.
24
,
1774
(
1999
).
21.
F.
Vetter
,
M.
Plewicki
,
A.
Lindinger
,
A.
Merli
,
S. M.
Weber
, and
L.
Wöste
,
Phys. Chem. Chem. Phys.
7
,
1151
(
2005
).
You do not currently have access to this content.